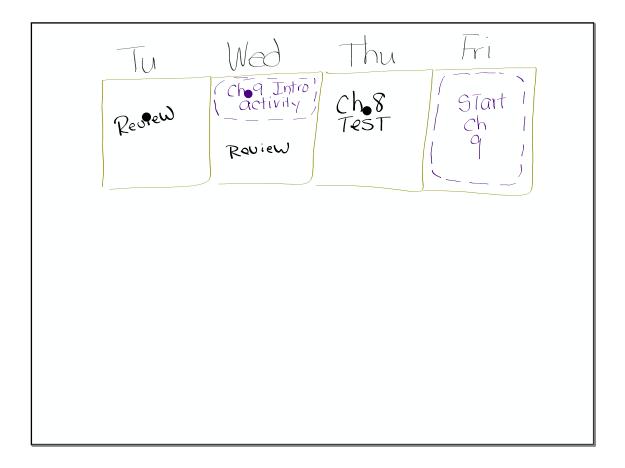
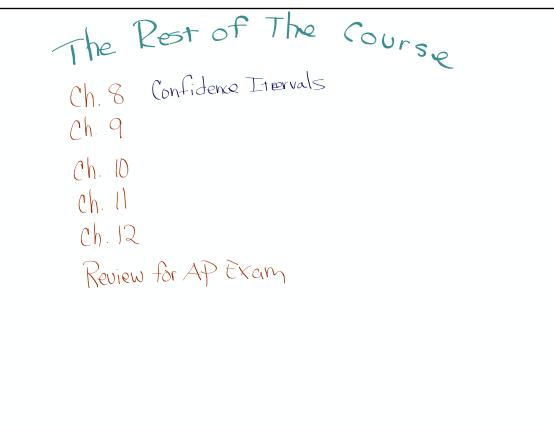
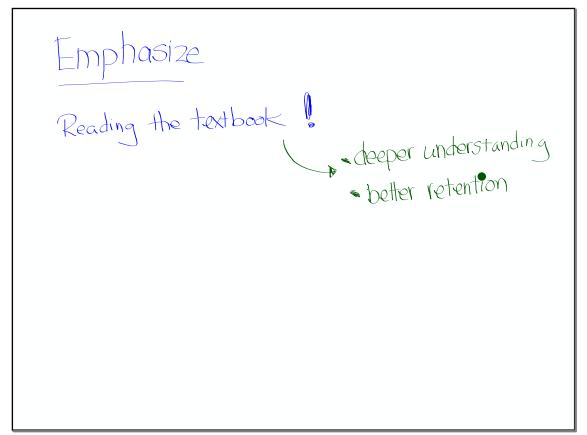

Happy New Year


and welcome back


Agenda overview of the last 9 weeks of AD STATS Start a review process for Ch. 8 Test will be Thursday of this week

Notes from Tues Jan 8

January 08, 2019


The Rest of The Course Ch. 8 Confidence Itervals Ch. 9 Testing Claims Ch. 10 ch. Il Ch. 12 Review for AP Exam

The Rest of The Course Ch. 8 Confidence Itervals Ch. 9 Testing Claims Ch. 10 Comparing Two Populations/Treatments ch. Il Ch. 12 Review for AP Exam

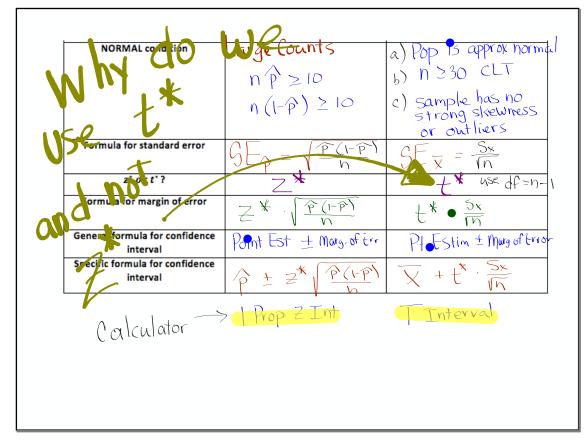
The Rest of The Course Ch. 8 Confidence Itervals Ch. 9 Testing Claims Ch. 10 Comparing Two Populations/Treatments Ch. 11 Inference for Distributions of Categorical Data Ch. 12 Chr. Square Tests (3-types) Review for AP Exam

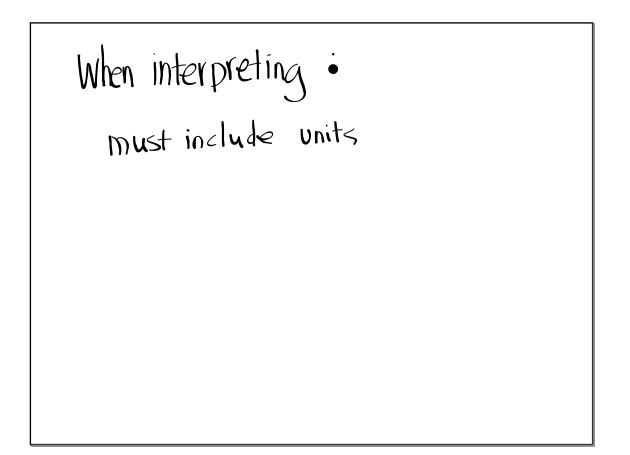
The Rest of The Course Ch. 8 Confidence Itervals Ch. 9 Testing Claims Ch. 10 Comparing Two Populations/Treatments Ch. 11 Inference for Distributions of Categorical Data Ch. 12 More on Scatter Plots/Regression (3-types) Review for AP Exam

The Rest of The Course Ch. 8 Confidence Itervals Ch. 9 Testing Claims Ch. 10 Comparing Two Populations/Treatments Ch. 12 More on Scatter Plots/Regression (3-types) Review for AP Exam 2 9 days

Today : Re-capture what we know about confidence intervals (start reviewing) See your 3 LCQ'S [except for Carson] Do the Ch. 8 Review Excercises (with video Solutions) if you already have done this, then do Ch. 8 Practice Test

Re-do Ch.8 Study Sheet


do as much as you can without looking at the old one.


/hat are we trying to estimate? Symbol for statistic	
Symbol for statistic	
Symbol for parameter	
Name of the procedure	
RANDOM condition	
10% Condition	

Γ

What are we trying to estimate? Proportion Mean Symbol for statistic P X Symbol for parameter P Max Name of the procedure One Sample z interval Name of the procedure One Sample z interval RANDOM condition I/SRS " random Sample I/SRS " random Sample 10% Condition N < to population N < to population		8.2	8.3
Symbol for parameter Name of the procedure one sample z interval one sample t interval for M RANDOM condition "SRS" random sample Somple	What are we trying to estimate?	proportion	mean
Name of the procedure one sample z interval one sample t for p interval for M RANDOM condition "SRS" random sample "ISRS" random Somple	Symbol for statistic	P	\overline{X}
RANDOM condition "SRS" random sample "SRS" random sample	Symbol for parameter	P	M
RANDOM condition "SRS" random sample "SRS" random Somple	Name of the procedure	ne sample z interval for P	one sample t interval for M
10% Condition n < to of population n < to of popula	RANDOM condition	"SRS" random sample	"SRS" random Somple
	10% Condition	$n < \frac{1}{10}$ population	n < to of popul

$\begin{array}{c} n \ \overrightarrow{p} \geq 10 \\ n \ (1-\overrightarrow{p}) \geq 10 \end{array} \qquad \begin{array}{c} n \ (1-\overrightarrow{p}) \geq 10 \\ n \ (1-\overrightarrow{p}) \geq 10 \end{array} \qquad \begin{array}{c} n \ (1-\overrightarrow{p}) \geq 10 \\ n \ (1-\overrightarrow{p}) \geq 10 \end{array} \qquad \begin{array}{c} n \ (1-\overrightarrow{p}) \geq 10 \\ n \ (1-\overrightarrow{p}) \geq 10 \end{array} \qquad \begin{array}{c} n \ (1-\overrightarrow{p}) (1-\overrightarrow{p}) \\ n \ (1-\overrightarrow{p}) (1-\overrightarrow{p}) (1-\overrightarrow{p}) \\ n \ (1-\overrightarrow{p}) (1-\overrightarrow{p}) (1-\overrightarrow{p}) (1-\overrightarrow{p}) \\ n \ (1-\overrightarrow{p}) (1-\overrightarrow{p}) (1-\overrightarrow{p}) (1-\overrightarrow{p}) \\ n \ (1-\overrightarrow{p}) (1-\overrightarrow{p}) $		Large Counts	a) Pop 13 approx horn
Formula for standard error $ \begin{array}{ccccccccccccccccccccccccccccccccccc$		$n \hat{p} \ge 10$	b) n 230 CL1
Formula for standard error $ \begin{array}{c} $		$n(1-\hat{p}) \geq 10$	c) sample has no strong skewness
Formula for margin of error $Z = \frac{1}{\sqrt{\frac{P(1-P)}{N}}}$ $L = \frac{1}{\sqrt{\frac{P(1-P)}{N}}}$ General formula for confidence Point Est $\pm Marg. of Err PleEstim \pm Marg. of Err Interval Statistic formula for confidence Point Est \pm Marg. of Err $	Formula for standard error		Sur
Z* Y </th <th>z* or t* ?</th> <th>Z*</th> <th>+ K use df=r</th>	z* or t* ?	Z*	+ K use df=r
interval Potnt EST ± III arg, or the Protestim = III arg of the	Formula for margin of error	Z * V P(+P)	$t^* \bullet \frac{5x}{17}$
Specific formula for confidence interval $p \pm z^{*} \sqrt{\frac{p(1-p)}{b}} + t^{*} \cdot \frac{S_{x}}{\sqrt{b}}$		Pornt Est ± Marg. of Err	Pt-Estim ± Marg of Er
		$p \pm z^* p(1-p)$	$\overline{\chi} + t^{x} \cdot \frac{s_{x}}{\sqrt{h}}$
	Calculator		

		Tail probability p df .10 .05 .025 .02 30 1.310 1.697 2.042 2.147 ✓ 40 1.303 1.684 2.021 2.123 ✓ 50 1.299 1.676 2.009 2.109 ∞ 1.282 1.645 1.960 2.054 80% 90% 95% 96% Countiertertert C				
df	.10	.05	.025	.02		
30	1.310	1.697	2.042	2.147		
<u> </u>	1.303	1.684	2.021	2.123		
- 50	1.299	1.676	2.009	2.109		
∞	1.282	1.645	1.960	2.054		
	80%	90%	95%	96%		
Confidence level C						
	-⁄ 40 -⁄ 50	 ✓ 40 1.303 ✓ 50 1.299 ∞ 1.282 80% 	 ✓ 40 ✓ 50 ✓ 50 ✓ 1.299 ✓ 1.676 ∞ ✓ 1.282 ✓ 1.645 𝔅 𝔅𝔅𝔅 𝔅𝔅𝔅𝔅 𝔅𝔅𝔅𝔅 𝔅𝔅𝔅𝔅 𝔅𝔅𝔅𝔅 𝔅𝔅𝔅𝔅 𝔅𝔅𝔅𝔅 𝔅𝔅𝔅𝔅 𝔅𝔅𝔅𝔅 𝔅𝔅𝔅 𝔅𝔅𝔅 𝔅𝔅𝔅 𝔅𝔅𝔅 𝔅𝔅𝔅 𝔅𝔅𝔅 𝔅𝔅 𝔅 𝔅𝔅 𝔅𝔅 𝔅 𝔅	✓ 40 1.303 1.684 2.021 ✓ 50 1.299 1.676 2.009 ∞ 1.282 1.645 1.960 80% 90% 95%		

See your LCQ's Advice: If any problems were not assigned I recommend looking at the solutions anyway. When finished: Start Ch. 8 Review .

