QUESTIONS ON HL \longrightarrow

1. If $g(x)=x^{2}-5$, find
(b) $x(-5)=$
. a) $g\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^{2}-5$ $(-5)^{2}-5$

$$
=\frac{1}{2} \cdot \frac{1}{2}-5=\frac{1}{4}-5
$$

$$
=-4.75
$$

c)

$$
\begin{aligned}
g(\underline{\underline{h+1}})=(h+1)^{2}-5 & =(h+1)(h+1)-5 \\
g(\text { input }) & =h^{2}+h+h+1-5 \\
& =\left(h^{2}+2 h-4\right.
\end{aligned}
$$

c) $g(\underline{\underline{h+1}})=$

$$
\begin{aligned}
& (h+1)^{2}-5 \\
& (h+1)(h+1)-5 \\
& h^{2}+h+h+1-5=h^{2}+2 h-4
\end{aligned}
$$

$$
\begin{aligned}
& (x+7)^{2} \neq x^{2}+49 \\
& (x+7)(x+7) \\
& x^{2}+7 x+7 x+49 \\
& =x^{2}+14 x+49
\end{aligned}
$$

2. The graph of $y=x^{2}$ is shown as a dashed curve at right. Estimate the equations of the two other parabolas.

3. Write each expression below in simplest radical form.

Yesterday's HWN

Compare your HW to mine

Today
"A missing Transformation"

Just Observe
for a moment

What kind of geometric
transformation have you made when you replace

$$
\begin{aligned}
& f(x) \quad \text { with } \quad f(x)+k \\
& y=x^{2} \quad y=x^{2}+3 \\
& y=\sqrt{x} \quad y=\sqrt{x}-30 \\
& y=\frac{1}{x} \\
& \\
& y=\frac{1}{x}+7
\end{aligned}
$$

What kind of Geometric Transformations occur when you replace

$$
f(x) \text { with }=f(x) \text { ? }
$$

$$
\begin{array}{ll}
y=x^{3} & y=-x^{3} \\
y=|x| & y=-|x| \\
& y=-\sqrt{x}
\end{array}
$$

$$
y=\sqrt{x}
$$

What kind of geometric
transformations happen
of you replace
$f(x)$ with $f(x-h)$

$$
\begin{array}{ll}
y=x^{2} & y=(x-3)^{2} \\
y=a b^{x} & y=a b^{x+4} \\
y=\frac{1}{x} & y=\frac{1}{x+3}
\end{array}
$$

What kind if:

$$
\begin{array}{cl}
f(x) \text { to } & a \cdot f(x) \\
f(x)=x^{2} & f(x)=6 x^{2} \\
f(x)=\sqrt{x} & f(x)=5 \sqrt{x} \\
f(x)=\frac{1}{x} & f(x)=10 \cdot \frac{1}{x}
\end{array}
$$

What type of transformation takes place when you...

$$
\begin{aligned}
& \text { replace } f(x) \quad \text { with } \quad f(-x) \\
& y=(x)^{3} \text { with } \\
& y=\frac{1}{x} \text { with } \\
& y=\frac{1}{(-x)}
\end{aligned}
$$

GDP

$$
\begin{aligned}
& y_{2}=x^{3} \text { with } y_{1}=(-x)^{3} \\
& y_{2}=\frac{1}{x} \text { with } y_{1}=\frac{1}{(-x)}
\end{aligned}
$$

Summary
Replacing x with $(-x)$ creates a reflection across the y-axis
examples

$$
\begin{aligned}
& y=x^{3} \Longrightarrow y=(-x)^{3} \\
& y=\frac{1}{x} \Rightarrow y=\frac{1}{(-x)}
\end{aligned}
$$

$$
f(x)=x^{2}+8 x+7
$$

example $8 \quad f(x)=x^{2}+8 x+7$
Sketch $f(x)$ and $f(-x)$ and label

example $\quad f(x)=x^{2}+8 x+7$
Sketch $f(x)$ and $f(-x)$ and label

Translating	New Title Circles

background

$$
y-20=(x)^{2}
$$

$$
x-8
$$

> IUEIIIIy ule velitel allu iaulus vi ec

1) ()$^{2}+(\quad)^{2}=$ Center $(-7 \quad 2)^{-7}$ Y Radius Ω

$$
\begin{aligned}
& x^{2}+4^{2}=4 \\
& (x+7)^{2}+(y-2)^{2}=4
\end{aligned}
$$

2) $(x-3)^{2}+(y-1)^{2}=25$

3)

$$
(x-1)^{2}+(y+3)^{2}=9
$$

Sketch a circle that has the equation

$$
(x+3)^{2}+(y-1)^{2}=4
$$

Graph
$x^{2}+y^{2}=25$ on your calculator

$$
\sqrt{y^{2}}=\sqrt{25-x^{2}}
$$

$$
y= \pm \sqrt{25-x^{2}}
$$

Graph $(x-4)^{2}+(y+5)^{2}=9$

$$
\begin{aligned}
& (y+5)^{2}=9-(x-4)^{2} \\
& \sqrt{ } \\
& y+5= \pm \sqrt{9-(x-4)^{2}} \\
& y= \pm \sqrt{9-(x-4)^{2}}-5
\end{aligned}
$$

\square

Parent Graph Name: Cubic
a) Parent Equation:
b) Description of Transformation:
c) Sketch Transformed Graph, $T(x)$ (Parent is already shown)
d) Write coordinates of the new locator point.
e) Write Transformation function, $T(x)$
f) List domain of $T(x)$ \qquad List range of $T(x)$ \qquad
g) List equations) of any asymptotes of $T(x)$
h) Describe any symmetry

Parent Graph Name: Parabola

h) Parent Equation:
i) Description of Transformation:
j) Sketch Transformed Graph, $T(x)$ (Parent is already shown)
k) Write coordinates of the new locator point.
I) Write Transformation function, $T(x)$

\qquad
m) List domain of $T(x)$ \qquad List range of $T(x)$ \qquad
n) List equations) of any asymptotes of $T(x)$
h) Describe any symmetry

5 Parent Graph Name: Hyperbola (reciprocal)
o) Parent Equation:
p) Description of Transformation:

Translate 3 whits right and 5 units up
q) Sketch Transformed Graph, $T(x)$
r) Write coordinates of the new locator point.
s) Write Transformation function, $T(x)$

\qquad
t) List domain of $T(x)$ \qquad List range of $T(x)$ \qquad
u) List equations) of any asymptotes of $T(x)$
h) Describe any symmetry
(6) Parent Graph Name:
v) Parent Equation: $y=\frac{-1}{x^{2}}$
w) Description of Transformation:
x) Sketch Transformed Graph, $T(x)$ (Parent is already shown)
y) Write coordinates of the new locator point.
z) Write Transformation function, $T(x)$

\qquad
aa) List domain of $T(x)$ \qquad List range of $T(x)$ \qquad
bb) List equations) of any asymptotes of $T(x)$
h) Describe any symmetry

Work Backwards starting from graph

Parent Graph Name:

a) Parent Equation:
b) Description of Transformation:
c) Sketch Transformed Graph, $T(x)$ (Parent is already shown)
d) Write coordinates of the new locator point.
e) Write Transformation function, $T(x)$
f) List domain of $T(x)$ \qquad List range of $T(x)$ \qquad
g) List equations) of any asymptotes of $T(x)$
h) Describe any symmetry
work back wands

(8) Parent Graph Name:

h) Parent Equation:
i) Description of Transformation:
j) Sketch Transformed Graph, $T(x)$ (Parent is already shown)
k) Write coordinates of the new locator point.
I) Write Transformation function, $T(x)$
\qquad
m) List domain of $T(x)$ \qquad List range of $T(x)$ \qquad
n) List equations) of any asymptotes of $T(x)$
h) Describe any symmetry

DIRECTIONS: Simplify the following expressions. The complete the statement correctly.

1. $\left(3 x^{2}\right)\left(10 x^{4}\right)$

Irena Sendler was born in \qquad Poland in 1910.
a. $13 x^{8} \quad$ Krakow
b. $30 x^{8} \quad$ Lodz
c. $30 x^{6}$ Warsaw
3. $\left(5 m^{3} n^{7}\right)\left(8 m n^{4}\right)$

Sendler was suspended from the school as a result of her protest against the \qquad ; form of segregation in the seating of students.
a. $40 \mathrm{~m}^{3} \mathrm{n}^{11}$
gender divide system
b. $40 \mathrm{~m}^{4} \mathrm{n}^{11} \quad$ ghetto-bench system
c. $13 \mathrm{~m}^{5} \mathrm{n}^{10}$ nationalized row system
2. $\left(a^{5} b^{7}\right)\left(a^{3} b^{5}\right)$

She studied \qquad at Warsaw University.
a. $a^{55} b^{76}$ education
b. $a^{15} b^{12}$ medicine
c. $a^{88} b^{13}$ Polish literature
4. $\left(\frac{1}{2} x^{5} y^{3}\right)\left(4 x^{2} y\right)(3 x)$

During World War II, she served as head of the Jewish children's section of Zegota, an underground \qquad organization.
a. $2 x^{7} y^{3}$ financial aid
b. $\quad 6 x^{85} y^{4}$ resistance
c. $6 x^{7} y^{3} \quad$ social welfare

```
5. (-3xd)
d. Undercover as a plumbing specialist, Sendler
smuggled Jewish infants out of the ghettos in a
a. -9x 8}\quad\mathrm{ burlap sack
b. 9x6 raincoat
c. 9x tool box
7. (5xy 3) (2x5y2)3
When she was discovered by the Nazis she was beaten and suffered
``` \(\qquad\)
```

a. $200 x^{17} y^{12} \quad$ broken arms and legs
b. $10 x^{12} y^{10} \quad$ internal bleeding
c. $150 x^{15} y^{14} \quad$ loss of hearing

```
6. \(\left(\frac{1}{4} a^{4} b^{5}\right)^{2}\)

With the assistance of other Zegota members,
Sendler saved roughly \(\qquad\) Jewish children
during the Holocaust.
a. \(\frac{1}{4} a^{8} b^{10}\)
25
b. \(16 \mathrm{a} \mathrm{ab}^{7}\)

250
c. \(\frac{1}{16} a^{8} b^{10}\)

2,500
8. \(\left(\frac{1}{2} m^{3} n^{2}\right)^{2}(8 m n)\left(-2 m^{4} n^{6}\right)\)

In 1999, high school students in Kansas staged
a play based on Sendler's life, titled \(\qquad\) which was adapted to a Hollywood film.
a. \(\quad 4 m^{8} n^{6}\)
Holocaust Heroine
b. \(-4 \mathrm{~m}^{11} \mathrm{n}^{11} \quad\) Life in a Jar
c. \(-8 \mathrm{~m}^{1 \mathrm{n}^{12}} \quad\) Underwraps

Rotate your papers clockwise
- Check 3 and 4 for accuracy
- Return papers

Assignment
2 128a, 129-130, 139, 146a
(b)```

