Ark up
(1) the new. Recording Sheet. (withe yesterday's assignment)
(2) Pick up the solutions (they are green) and check your work
(3) and grab a piece of candy if you like

Handout
Arithmetic Sequences
1
\square
(A)
(1), (2) $27,27,37$, (5)

zero term format $t(n)=-3+10(n)$
first term format $t(n)=7+10(n-1)$

$$
\begin{aligned}
t(50)= & \begin{aligned}
&-3+10(50) \\
&=497
\end{aligned} \quad t_{50}=7+10(50-1) \\
& =497
\end{aligned}
$$

(B) $90,85,80,75, \ldots$

$$
\begin{aligned}
t(n) & =-5 n+90 & <0 \text { term } \\
\text { or } \quad t(n) & =90-5(n-1) & <1^{\text {st tern }} \\
t(26) & =90-5(26-1) &
\end{aligned}
$$

(c)

n	$t(n)$		
1	5.75		
2	6.00	$1^{\text {st }}$	$t_{n}=5.75+.25(n-1)$
3	6.25	$0^{\text {term }}$	$t_{n}=5.5+0.25(n)$
4	6.50		
5	6.75		

Is it possible
for $t(n)=42$

$$
\left.\begin{array}{rl}
t(n) & =3 n-7 \\
42 & =3 n-7 \\
+7 \\
+7
\end{array}\right] \begin{aligned}
49 & =3 n \\
n & =\frac{49}{3} \approx 16.3
\end{aligned}
$$

2 Consider the sequence $t(n)=-4,-1,2,5$,
A_{\bullet} Write the equation for the sequence, $t(n)$.

$$
\begin{array}{rl}
\underline{1}^{s t} \operatorname{ter} n & t(n) \\
& =-4+3(n-1) \\
t(n) & =
\end{array}
$$

B. Is it possible for $t(n)$ to equal 42 ?

$$
\begin{array}{ll}
\text { possible for } t(n) \text { to equal } 42 ? \\
42=-4+3(n-1) & 49 \\
42=-4+3 n-3 & n=\frac{49}{3}=16 . \overline{3}
\end{array}
$$

C. For the function $f(x)=3 x-7$, is it possible for $f(x)$ to equal 42 ?

On the other hand....
(c) Is it possible for
the function $f(x)=42$
Yes, because the domain
of $f(x)=3 n \cdot 7$
is all real numbers

so $\frac{49}{3}$| can be an |
| :--- |
| answer |

3 Complete the table for the geometric sequence. Then, write sequence formulas in both first term and zero term formats.

1	
2	
3	49
4	
5	
6	16807
7	

$49 \cdot m \cdot m \cdot m=16807$
$49 m^{3}=16807$
$\sqrt[3]{m^{3}}=\sqrt[3]{\frac{16807}{49}}$
$m=7$

Benjamin is stuck on the problem shown below. Examine his work so far and help him by showing and explaining the remaining steps.

Original problem: Simplify $\left(3 a^{-2} b\right)^{3}$.

He knows that $\left(3 a^{-2} b\right)^{3}=\left(3 a^{-2} b\right)\left(3 a^{-2} b\right)\left(3 a^{-2} b\right)$. Now what?

$$
3 \cdot 3 \cdot 3 a^{-2} a^{-2} a^{-2} \cdot b b
$$

Original problem: Simplify $\left(3 a^{-2} b\right)^{3}$.

He knows that $\left(3 a^{-2} b\right)^{3}=\left(3 a^{-2} b\right)\left(3 a^{-2} b\right)\left(3 a^{-2} b\right)$. Now what?

After Test Assignment

\qquad Date \qquad
this will count as the first assignment for the next Unit.
Find the missing terms of the sequence and write a sequence formula in both zero term and first term format.
a) \qquad , \qquad 125, \qquad , \qquad , (hint: the multiplier is 1.25)
first term format: $t_{n}=$ \qquad zero term format: $t_{n}=$ \qquad
b) $4000,1000,250$, \qquad , \qquad ,
\qquad zero term format: $t_{n}=$

After Test Assignment

Name \qquad Date \qquad
this will count as the first assignment for the next Unit.
Find the missing terms of the sequence and write a sequence formula in both zero term and first term format.
a)

$, 125,160 \cdot 25 \cdot \frac{15 \cdot 312}{2}$. (hin int: the multiplier is 1.25)
first term format: $\quad t_{n}=$ $80(1.25)^{n-1}$ zero term format: $t_{n}=$ \qquad $64(1.25)^{n}$
b) $4000,1000,250,6,5,15,62,, \ldots$.
$\begin{aligned} \frac{1000}{4100}=\frac{1}{4} \frac{250}{1000} & =\frac{1}{4} \\ \text { first term format: } t_{n} & =\frac{4000\left(\frac{1}{4}\right)^{n-1}}{\text { or } 4000(0.25)^{n-1}}\end{aligned}$ zero term format: $t_{n}=16,000\left(\frac{1}{4}\right)^{n}$

Several customers at a fancy restaurant were reporting food poisening. A biologist named Tina was recording bacteria growth on the cooking surfaces. She is trying to predict the amount of bacteria after 20 hours. Unfortunately she lost the count after the first hour and forgot to record count at six hours.
a) Determine the missing counts.
b) Write a sequence formula, using the notation, " $t_{n}=$ " that models the growth after n hours.
c) Use your formula to calculate the predicted bacteria counts after 20 hours.

hours	\# bacteria
1	
2	10
3	25
4	62.5
5	156.25
6	

(2) Several customers at a fancy restaurant were reporting food poisening. A biologist named Tina wa recording bacteria growth on the cooking surfaces. She is trying to predict the amount of bacteria hours. Unfortunately she lost the count after the first hour and forgot to record count at six hours.
a) Determine the missing counts.

b) Write a sequence formula, using the notation, " $t_{n}=$ " that models the growth after n hours.
$t_{n}=4(2.5)^{n-1}$
c) Use your formula to calculate the predicted bacteria counts after 20 hours.
$t_{20}=4(2.5)^{20-1}=145,519,52$

hours	\# bacteria
1	4
2	10
3	25
4	62.5
5	156.25
6	390,625

(3) Challenge:

Determine a formula for the geometric sequence:

$68 \cdot r \cdot r=786.08 \quad$| 2 | 3 |
| :--- | :--- |
| $68 r^{2}=786.08$ | 4 |
| 768.0878608 | |
| | 5 |

Four Day Unit

Transfer Skill Review from Alg/Geom before starting Chapter 2

Today's AIM:

Percent Growth

(as related to sequences and exponential functions)
requires geometric thinking

A few tidbits about negative exponents

Notes
Percent Growth (or decay)
(example Grow by 15%

$120, \ldots$,
multiplier: $\frac{1.15}{2} \begin{gathered}100^{\%}+155^{\prime \prime} \\ 11.15\end{gathered}$

$$
\begin{aligned}
& \frac{120}{1}, \\
& 120 \times 1.15=138
\end{aligned}
$$

$$
\begin{aligned}
& \frac{120}{1}, \frac{138}{2}, \frac{158.7}{3}, \frac{182.505}{4}, \cdots \\
& t_{n}=
\end{aligned}
$$

3° decrease

$$
100^{\prime}-3^{\prime \prime}
$$

10000

$$
\begin{aligned}
& 1,1=10, \\
& t(n)=10000(.97)^{n} \\
& f(x)=10000(.97)^{x}
\end{aligned}
$$

example
Start with 1000
(c) $t=$ weeks at 6.5% growth

Write a formula.

$$
f(t)=1000(1.06)
$$

How many weeks would it take to reach 80,000

