1.

$(14,10)$ and $(-7,1)$

$$
\frac{1-10}{-7-14}=\frac{-9}{-21}
$$

slope

$$
\begin{aligned}
& m=\frac{10-1}{14-7}=\frac{9}{21}= \\
& m=\frac{10-1}{14-7} \\
& m=9
\end{aligned}
$$

(2)

$$
\begin{array}{ll}
y=m x+b & (14,10) \text { and }(-7,1) \\
y=\frac{3}{7} x+b \\
\left.l=\frac{3}{1}(-x) \right\rvert\,+b \\
1=-3+b \\
+3 \\
y & y=\frac{3}{7} x+4 \\
b=4
\end{array}
$$

$$
\begin{aligned}
& 3 \quad(8,-1) \text { and }\left(2, \frac{7)}{4}\right\} \quad y=m x+b \\
& m=\frac{-1-7}{8-2} \\
& m=\frac{-8}{6} \\
& m=-\frac{4}{3} \\
& \begin{array}{l}
7=-\frac{4}{3}(2)+b \\
7=-\frac{8}{3}+b
\end{array} \\
& \text { mult by } 3 \\
& 21=-8+3 b \\
& 29=3 b \\
& \frac{29}{3}=b \\
& y=\frac{-4}{3} x+\frac{29}{3}
\end{aligned}
$$

$\left.\left.\begin{array}{l}3 \quad(8,-1) \text { and }(2,7) \\ m=\frac{-1-7}{8-2} \\ m=\frac{-8}{6} \\ m=\frac{-4}{3}\end{array}\right\} \begin{array}{l}y=m x+b \\ 7=\frac{-4}{3}(2)+b\end{array}\right\}$

I $\left(-2 x^{2} y^{3}\right)^{2}$ $\left(-3 x^{3} y^{2}\right)^{2}$	
M $\left(-2 x^{3} y\right)^{3}$	$\left(7 x^{2} y^{5}\right)^{2}$ T $\left(70^{4}\right)^{3}$
$(-2)^{3}\left(x^{3}\right)^{3} y^{3}$ $-8 x^{9} y^{3}$	

\square

HW Questions?

let's go over \#86

$\mathbf{8 6}$	$f(x)=\sqrt{\mathbf{x}}-\mathbf{2}$	(2) Special point endpoint $(0,-2)$
(1)	(3) Domain	

(6) $y-i+t(0,-2) \quad y=\sqrt{x}-2$

$$
\frac{x-\operatorname{lnt}}{(4,0)}>
$$

$\sqrt{x}-2=0$
$(\sqrt{x})^{2}=(2)^{2}$

$$
x=4
$$

84 find intersection between

$$
\begin{aligned}
& f(x)=\frac{2 x^{2}-3 x+4}{} \text { and } g(x)=\frac{x^{2}+5 x-3}{} \\
& 2 x^{2}-3 x+4=x^{2}+5 x-3 \\
& x^{2}-8 x+7=0 \\
& (x-7)(x-1)=0 \\
& a+b=0 \\
& x-7=0 \quad x-1=0 \\
& x=7 \quad x=1
\end{aligned}
$$

$$
a \quad y=3 x-6 \quad b \quad y \quad y=2 x^{2}+4
$$

\square

91
A) $\begin{aligned} & y=m x+b \\ &-b \\ & x\end{aligned}$
$y-b=m x$

$$
x=\frac{y-b}{m}
$$

$$
x=\frac{y}{m}-\frac{b}{y}
$$

C)

$$
\begin{aligned}
& V=L W H \\
& W=\frac{V}{L H}
\end{aligned}
$$

d) $2 x+\frac{1}{y}=3$

$$
93 \quad \underbrace{y=3 x+15} \quad y=3-3 x \quad \underbrace{\text { find }}_{x}
$$

c) Write an equation that does not contain y and solve it for x.

$$
3 x+15=3-3 x
$$

d) Use the x-value you found to find the corresponding y - value
$95 \quad h(x)=x^{2}-5$
find x-intercepts

97 MATCHING

a. $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \nwarrow$
b. $\frac{\sin A}{a}=\frac{\sin B}{b}$

c. $c^{2}=a^{2}+b^{2}$
d. $c^{2}=a^{2}+b^{2}-2 a b \cos C$

1. Law of Cosines
2. Law of Sines
3. Pythagorean Theorem
4. Quadratic Formula

Learning is always easier if one can initially make a connection to what you already know

Determine whether relationships given in tables and situations are linear or not.
\square

Parameters give the function it's shape.

$$
y=m x+b \quad y=\frac{1}{x-h} \quad y=a x^{2}+b x+c
$$

c) Parameters

$$
y=m_{\uparrow} x+b_{\uparrow}^{b} \quad y=\frac{1}{x-h} \quad y=\underset{\uparrow}{a} x^{2}+\underset{\uparrow}{b} x+c
$$

in the family

$$
\begin{aligned}
& y=m x+b \quad y=3 x+2 \\
& x \text { and } y ? \quad m \text { and } b \\
& \text { in puls outputs } \quad y \quad \text { constants }
\end{aligned}
$$

What effect does m have? b ?

$$
\text { is } \begin{aligned}
& 2 y+5 x=7 \text { linear? } \\
& \frac{z_{-} y}{2}=\frac{-5 x}{2}+\frac{7}{2} \\
& y=\frac{-5}{2} x+\frac{7}{2}
\end{aligned} \quad y=m x+b
$$

Activity to determine if a situation is linear

1. Decide if it is linear or not.
2. If linear, what is it's equation.

a.Pieces of Bread	Grams of Fiber
0	0
1	5
2	10
3	15
4	20

b.

Killer Fried Chickens charges $\$ 7.00$ for a basic bucket of chicken and $\$ 0.50$ for each additional piece. The input is the number of extra pieces of chicken ordered, and the output is the total cost of the order.

$$
\text { c. } \begin{array}{c|cl}
x & y & \\
\hline 10 & 0 \\
5 & 5 \\
3 & 7 \\
2 & 8 & \\
1 & 9 & \\
0 & 10 &
\end{array}
$$

d.

x	y
10	1
5	2
4	2.5
2	5
1	10
0.5	20

e. | James planted a bush in |
| :--- |
| his yard. The year he |
| planted it, the bush |
| produced 17 flowers. |
| Each year, the branches |
| of the bush split, so the |
| number of flowers |
| doubles. The input is the |
| year after planting, and |
| the output is the number |
| of flowers. |

f. | x | y |
| :---: | :---: |
| 0 | -7 |
| 2 | -2 |
| 4 | 3 |
| 6 | 8 |
| 8 | 13 |

Assignment

1104 to 110

