 going back to September

The cumulative frequency graph below displays the marks scored by year 12 students from a cluster of schools in a common trial mathematics exam.

Trial mathematics exam

Find:
a how many students $4 / 80$ sat for the examination
b the probable maximum possible
 mark for the exam
c the median mark
83 marks (\pm)
2. The daily rainfall for the town of St. Anna is collected over a 20-day period of time.
The collected data are represented in the box and whisker plot below.

(a) Write down
(i) the lowest daily rainfall; 0
(ii) the highest daily rainfall. 20
[2 marks]
(b) State what the value of 12 mm represents on the given diagram.
[1 mark]
Median navifal
(c) Find the interquartile range.

$$
14-9=5 \mathrm{~mm}
$$

(d) Write down the percentage of the data which is less than the upper quartile. 75 [1 mark]

In an experiment, a number of fruit flies are placed in a container. The population of fruit flies, P, increases and can be modelled by the function

$$
P(t)=12 \times 3^{0.498 t}, t \geq 0
$$

where t is the number of days since the fruit flies were placed in the container.
(a) Find the number of fruit flies
(i) which were placed in the container;
(ii) that are in the container after 6 days.

The maximum capacity of the container is 8000 fruit flies.
(b) Find the number of days until the container reaches its maximum capacity.

Working:

$$
\begin{aligned}
& \text { (a) (i) } P(0)=12(3)^{24} \\
& =12 \\
& \text { (ii) } P(6)=12(3)^{.048 .(6)} \\
& \text { (ii) } P(6)=12(3) \\
& =319.756 \ldots=320
\end{aligned}
$$

b) $8000=12(3)^{.498 t}$
divide
$\frac{8000}{12}=3^{.2988 t}$
can solve graphically

Or logarithms

$$
t=11.9 \text { days }
$$

Answers:
(a) (1) 12 fruisflies
(ii) 320 fruifflies
(b)
(1) 320 g dabicise

A solid right circular cone has a base radius of 21 cm and a slant height of 35 cm .
A smaller right circular cone has a height of 12 cm and a slant height of 15 cm , and is removed from the top of the larger cone, as shown in the diagram.

See your IB formula sheet for formulas.
a) Proportion

$$
\begin{aligned}
& r^{2}+12^{2}=15^{2} \\
& r^{2}=15^{2}-12^{2} \\
& i r=\sqrt{15^{2}-12^{2}} \\
& r=\sqrt{81}=9 \\
& r=9 \mathrm{~cm}
\end{aligned}
$$

(5) Consider the quadratic function $f(x)=a x^{2}+b x+22$.

The equation of the line of symmetry of the graph $y=f(x)$ is $x=1.75$.
(a) Using only this information, write down an equation in terms of a and b.

The graph intersects the x-axis at the point $(-2,0)$.
(b) Using this information, write down a second equation in terms of a and b.
(c) Hence find the value of a and of b.

The graph intersects the x-axis at a second point, P .
(d) Find the x-coordinate of P .

Working:
(a) center of a parabola (from formula sheet) $x=-\frac{b}{2 a}$

$$
1.75=-\frac{b}{2 a} \rightarrow \begin{gathered}
\text { multiply } \\
b y \\
2 a
\end{gathered} 3,5 a=-b
$$

c)

$$
\begin{gathered}
b=-3.5 a \\
4 a-2 b^{2}+22=0 \\
4 a-2(-3.5 a)+22=0 \\
4 a+7 a+22=0 \\
11 a=-22 \\
a=-2 \\
b=-3.5(-2) \\
=7
\end{gathered}
$$

Answers:
(a) $3,5 a+b=0$
(b) $4 a-2 b+22=0$
(c) $a--2 b=7$
(d) . $50.0 .0 . \ldots . .$.

