be sure to have your Formula packet out on

 your desk today ${ }^{\circ}$The solutions for yesterday's HW have been posted for you to check tonight.

Today:

New Unit on
Sequences \& Series

Here's a casual definition:
A sequence is a list of numbers (or other things) that changes according to some sort of pattern.

There are finite sequences that just stop after a certain number of terms.
Like this guy:

$$
-3,1,5,9,13,17,21
$$

And there are infinite sequences that keep on going forever and ever.
Like:

$$
0,2,4,6,8,10,12, \ldots
$$

These three dots means that it keeps going.

Here's a casual definition:
A sequence is a list of numbers
(or other things) that changes according to some sort of pattern.

- Sequence (A second definition)

A list of numbers, called terms, written in a specific order. Each term has second number associated with it that relates to its position in the sequence.
about the

Sequence (A second definition)
A list of numbers, called terms, written in a specific order. Each term has second number associated with it that relates to its position in the sequence.
with numbers, we usually assign each spot with a special symbol:

$$
a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{n}, \ldots
$$

The $n^{\text {th }}$ term is given by a formula. We can use this formula to build the sequence.
a_{n} is known as the explicit formula

Let's build the sequence whose $n^{\text {th }}$ term is given by

$$
a_{n}=2^{n}-3 n
$$

If we let $n=1$, weill get the first term of the sequence:

$$
n=1 \rightarrow a_{1}=2^{\prime}-3(1)=-1
$$

If we let $n=2$, weill get the second term:

$$
a_{2}=2^{2}-3(2)=-2
$$

If we let $n=3$, well get the third term:

$$
a_{3}=2^{3}-3(3)=-1
$$

and so on...

$$
\begin{aligned}
& a_{4}=2^{4}-3(4)=4 \\
& a_{5}=2^{5}-3(5)=17 \\
& a_{6}=2^{6}-3(6)=46
\end{aligned}
$$

So, our sequence is

$$
-1,-2,-1,4,17,46, \ldots
$$

For this class, you will be responsible for two types of sequences for the most part.
a) Arithmetic Sequences
b) Geometric Sequences

Arithmetic
 Sequences

$2,5,8,11, \ldots \quad d=3$
$2,6,10,14,18, \ldots \quad d=4$
$15,11,7,3, \ldots \quad d=-4$
$19,16,13,10, \ldots \quad d=-3$

Geometic Sequences

$$
5,10,20,40, \ldots r=2
$$

$$
80,20,5, \frac{5}{4}, \frac{5}{16}, \ldots r=\frac{1}{4}
$$

$100,1,001,00001$, $r=\frac{1}{100}$

Aim today
 Create and use an explicit formula for ARITHMETIC SEQUENCES

Find the Sum of anARIHMEIIC SEQUENCE

Finding the Explicit Formula (nth term)

for Arithmetic Sequences

What is the common difference?

Therefore, $d=$ 10

Starting from 5, how many differences do we need to get to the 5 th term? 6th term?
7th term?
50th term?
$5_{\uparrow}+10(n-1)$
example Find the explicit formula, a_{n}

$$
6,10,14,18, \ldots
$$

$a_{n}=6+4(n-1)$

Given an arithmetic sequence $a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots$
 that has a difference of d, the $n^{\text {th }}$ term is
 $$
a_{n}=a_{1}+(n-1) d
$$

or as shown in the Formula Packet

$$
U_{n}=U_{1}+(n-1) d
$$

$$
\begin{aligned}
U_{n} & =U_{1}+(n-1) d \\
& =10+(n-1)(-3) \\
& =10-3(n-1)
\end{aligned}
$$

from Algebra

$$
\begin{aligned}
t(n) & = \\
t_{1} & =
\end{aligned}
$$

Find the 85 th term of the sequence $3,8,13,18, \ldots$

$$
\begin{aligned}
& U_{n}=3+5(n-1) \\
& u_{85}=3+5(85-1)
\end{aligned}
$$

example from a different angle The 32nd term of a Arithmetic sequence is 349. (1) The first term is 8 . What is the common difference?

$$
\begin{aligned}
& \text { it depends } \\
& \text { arithmetic? } \\
& \text { geometric? }
\end{aligned}
$$

The 32nd term of an ARITHMETIC sequence is 349. The first term is 8 . What is the common difference ?

$$
B . B .
$$

Series

A series is the sum of a sequence.
Here's a sequence:

$$
1,2,3,4,5
$$

Here's the corresponding series:

$$
1+2+3+4+5
$$

A true story about

Carl Friedrich Gauss

Here was the day's problem:
Add the integers from 1 to 100.
They got out their slate boards and chalk and started hammering away!

$$
\begin{aligned}
& 1+2=3 \\
& 10+5=15 \quad 6+4=6 \quad 15+6=21 \\
& 21+7=28 \quad 28+8=36 \quad 36+9=45
\end{aligned}
$$

$$
1+2+3+4+\ldots+50+51+\ldots+97+98+99+100
$$

There's a pattern here:
Check this out:

There are 50 pairs of $101 \ldots$

$$
\text { That's } 50(101)=5050
$$

Pick up Notes on SERIES
(w) Find the sum of the integers from 1 to 40

Generalize Find the sum of the terms in the sequence from $\mathbf{a}_{\mathbf{1}}$ to $\mathbf{a}_{\mathbf{n}}$ using the same method if there are \boldsymbol{n} terms.

$$
\begin{array}{cc}
S_{n}=a_{1}+a_{n}+\frac{k}{2} & \left(a_{n}^{k} / 2\right)\left(a_{1}+a_{n}\right) \\
1+40+\frac{40}{2} & \left(\frac{40}{2}\right)(1+40) \\
20,21,22 \ldots 100 & 20(41)
\end{array}
$$

- Arithmetic Series

To find the sum of the first n terms:

$$
\begin{aligned}
a_{1}+a_{2} & +a_{3}+\ldots+a_{n} \\
S_{n} & =\frac{n}{2}\left(a_{1}+a_{n}\right)
\end{aligned}
$$

IB Formula Packet

$$
\begin{aligned}
& \text { Formula Packet } 0 \\
& S_{n}=\frac{n}{2}\left(u_{1}+u_{n}\right)=\frac{n}{2}\left[u_{1}+u_{1}+d(n-1)\right] \\
& \qquad u_{n}=u_{1}+d(n-1)
\end{aligned}
$$

The cool thing about his formula is that it works on an ODD number of terms

$$
3+13+23+33+43
$$

Instead, find the sum of all 83

$$
u_{85}=3+5(85-1)
$$

$$
=423
$$

$$
\begin{aligned}
S_{85} & =\frac{85}{2}(3+423) \\
& =1785018105
\end{aligned}
$$

a) Determine the number of terms in the sequence

$$
24,23 \frac{1}{4}, 22 \frac{1}{2}, \cdots, \cdots,-36
$$

b) Then find the sum.
c) Then find only the $35^{\text {th }}$ term.
a) Determine the number of terms in the sequence

$$
24,23 \frac{1}{4}, 22 \frac{1}{2}, \ldots, \ldots .-36
$$

Best
friend

$$
\begin{aligned}
& u_{n}=u_{1}+d(n-1) \\
& -36=24-0.55(n-1) \\
& -60=-.75(n-1) \\
& -60=n-1 \\
& -60=n \\
& 80=n-1 \quad n=-81
\end{aligned}
$$

$$
\begin{aligned}
S_{81} & =\frac{81}{2}(24+-36) \\
& =-486 \\
U_{35} & =24-.5(35-1) \\
& =-1.5
\end{aligned}
$$

b) Then find the sum.
c) Then find only the $35^{\text {th }}$ term.

Assignment
Worksheet Use good notation

The solutions for yesterday's HW have been posted for you to check tonight.

