- Let me know about HW problems. -Warm Up
Solve $30(2 .)^{n}=6000$ -Warm Up
Solve $30(2 .)^{n}=6000$

$$
30(20 .)^{n}=6000
$$

It turns out you don't need your book until tomorrow. tomorrow.

$$
30(2 \cdot 1)^{n}=6000
$$

divide by 30

$$
\begin{gathered}
(2.1)^{n}=200 \\
l \\
\log \left(2.1^{n}\right)=\log (200) \\
n \cdot \log (2.1)=\log (200) \\
n=\frac{\log (200)}{\log (2.1)}
\end{gathered}
$$

$$
\begin{array}{rlr|}
30(2.1)^{n} & =6000 & \log \text { For } m \\
\text { divide by } 30 & & \log (200)=n \\
(2.1)^{n} & =200 & n=\log (200) \\
l & & \left.n=\frac{\log (200)}{\log (2.1)}\right) \\
\log \left(2.1^{n}\right) & =\log (200) & =
\end{array}
$$

\#6 Solution does not match

$$
\begin{array}{ll}
\text { deposit } 50 & 50,75,100, \\
\text { on fist BD. } & \text { (1) }
\end{array}
$$

a) How much $\#$ on $16^{\text {th }}$ birthday?

$$
\begin{aligned}
U_{n} & =U_{1}+d(n-1) \\
U_{16} & =50+25(16-1) \\
& =\$ 425
\end{aligned}
$$

b) How much would he have deposited in total on $16^{\text {th }}$ Birthday?

Translation Find the Sum of the first 16 terms

$$
\begin{aligned}
S_{n} & =\frac{n}{2}\left[2 u_{1}+d(n-1)\right] \quad S_{16}=\frac{16}{2}\left(50+\frac{404}{1}\right] \\
& =\frac{16}{2}[2(50)+25(16-1)] \\
& =\$ 3,800
\end{aligned}
$$

Today
Finding the Sum of Geometric Sequences (and of course the $\mathrm{n}^{\text {th }}$ term form those same sequences)
example

$$
2,10,50,250, \ldots . .
$$

A sequence is geometric if each term can be obtained from the previous term by multiplying by the same number.

This number is the constant ratio, r

$$
\begin{array}{rlrl}
2,10,50,250, \ldots \ldots, & u_{n}, u_{n}, \\
u_{1} & r
\end{array}
$$

What is the common ratio of

$$
135,90,60,40, \ldots
$$

If the terms are getting smaller, then the common ratio must be less than 1

$$
r=\frac{40}{60} \quad \frac{60}{90} \quad \frac{90}{135}=\frac{2}{3}
$$

Note
 You are expected to show work, using good notation in this unit.

Just fiddling around with
a calculator won't work out well
for you.

Is the following sequence geometric?

If so, what is common ratio? $r=2$
How many applications of 2 do you need to get from the first term to the 3rd term?

$$
\begin{array}{ll}
U_{n}=0.5(2)^{n-1} & \begin{array}{l}
\text { to the 4th term? } \\
\\
\\
\\
\text { to the } 85 \text { th term? } \\
\text { to the } \text { nth term? }
\end{array}
\end{array}
$$

if Geometric........
your best friend
will be

Explicit formula for
Geometric Sequences

Let's try it!
What's the $23^{\text {rd }}$ term of this sequence?

$$
\frac{1}{9},-\frac{1}{3}, 1,-3,9, \ldots
$$

Find the ratio:

$$
\begin{aligned}
& r=\frac{-\frac{1}{3}}{\frac{1}{9}} \text { or } \frac{1}{-\frac{1}{3}}=\text { or } \frac{-3}{1}=-3 \\
& u_{n}=\frac{1}{9}(-3)^{23-1}=3,486,784,401
\end{aligned}
$$

The first term of a geometric sequence is 4 and the last term is 26,244 . If there are 9 terms in the sequence, what is the common ratio?

Alternative wording for the same
find r if $u_{1}=4$ and $u_{9}=26,244$

$$
\begin{aligned}
& \text { Best friend } \\
& u_{n}=u_{1}(r)^{n-1}
\end{aligned}
$$

Note
If something grows at 15%, then the common ratio would be $(1+.15)$ or 1.15

\square
the sum of a geometric sequence
Add the terms

$$
\begin{aligned}
& \text { first } 4,2,1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8} \cdots \cdots \\
& S_{10}=4+2+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8} \ldots \ldots
\end{aligned}
$$

$$
S_{10}=\frac{4\left(1-\frac{1}{2}\right)}{1-\frac{1}{2}}=
$$

Luckily, there's a formula!
To find the sum of the first n terms of a geometric sequence:

Luckily, there's a formula!
To find the sum of the first n terms of a geometric sequence:

$$
S_{n}=\frac{U_{1}\left(1-r^{n}\right)}{1-r}
$$

for finite sequences
\square

$$
\begin{aligned}
& S_{n}=\frac{u_{1}\left(1-r^{n}\right)}{1-r} \longleftarrow \text { reverse } \\
& r=\frac{-3}{7} \\
& S_{n}=\frac{u_{1}\left(r^{n}-1\right)}{r-1} \backslash \frac{4\left(1-\left(\frac{-3}{7}\right)^{10}\right)}{1-\left(\frac{3}{7}\right)} \\
& \backslash \frac{4\left[\left(-\frac{-3}{7}\right)^{10}-1\right]}{\frac{-3}{7}-1}
\end{aligned}
$$

Formula Packet

$$
S_{n}=\frac{u_{1}\left(r^{n}-1\right)}{r-1} \quad S_{n}=\frac{u_{1}\left(1-r^{n}\right)}{1-r}
$$

$$
S_{n} \frac{u_{1}\left(1-r^{n}\right)}{1-r}
$$

$$
S_{n}=\frac{u_{1}\left(r^{n}-1\right)}{r-1}
$$

$$
4\left(\frac{1-\left(-\frac{3}{4}\right)^{20}}{1-\left(-\frac{3}{4}\right)}\right)
$$

$$
4\left(\frac{\left(-\frac{3}{4}\right)^{20}-1}{\left(-\frac{3}{4}\right)-1}\right)
$$

$$
\begin{aligned}
S_{10} & =4+2+1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8} \\
S_{10} & = \\
& =\frac{4\left(1-\left(\frac{1}{2}\right)^{10}\right)}{1-\frac{1}{2}} \\
& =8\left(1-\left(\frac{1}{2}\right)^{10}\right) \\
& =\frac{1023}{128}
\end{aligned}
$$

\square

Assignment \#2

Worksheet

Why does $S_{n}=\frac{g_{1}\left(1-r^{r}\right)}{1-r}$ work?

$$
\begin{gathered}
S_{n}=g_{1}+g_{1} r+g_{1} r^{2}+\ldots \ldots \ldots+g_{1} r^{n-1} \\
\begin{array}{c}
\text { Typical Geometric } \\
\text { series } \\
\text { last (or } N^{+h} \text {) } \\
\text { term }
\end{array} \\
\text { multiply by } r
\end{gathered}
$$

$$
\begin{aligned}
& S_{n}=g_{1}+g_{1} r+g_{1} r^{2}+\ldots \ldots .+g_{1} r^{n-1} \\
& \text { Typical Geometric } \\
& \text { series }
\end{aligned}
$$

multiply by r

$$
r S_{n}=g_{1} r+g_{1} r^{2}+g_{1} r^{3}+\ldots \ldots g_{1} r^{n-1}+g_{1} r^{n}
$$

subtract preceeding equation

$$
S_{n}-r S_{n}=g_{1}-g_{1} r^{n}
$$

$$
\begin{aligned}
S_{n}-r S_{n} & =g_{1}-g_{1} r^{n} \\
(1-r) S_{n} & =g_{1} \\
S_{n} & =\frac{g_{1}\left(1-r^{n}\right)}{1-r} \text { as long as } r \neq 1
\end{aligned}
$$

\square

Assignment 2 (Sequences/Series)

a worksheet

