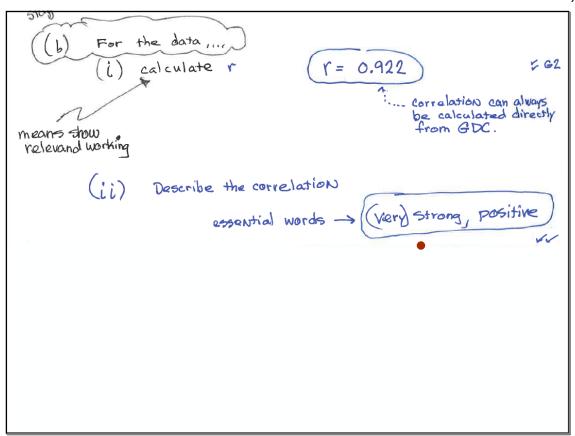
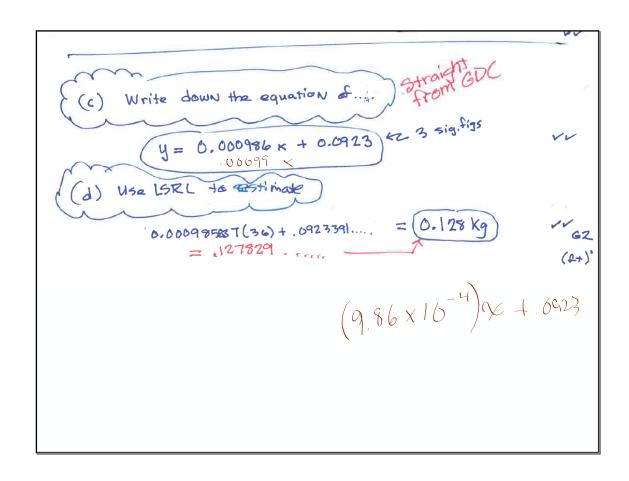
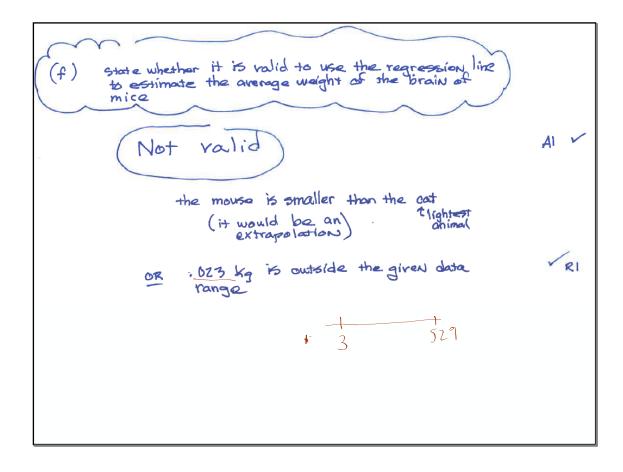

Kídney Stones


- I don't recommend them


Have your solutions for questions #1 and #2 out for viewing. Don't panic if you got stuck at some point(s).


	Name	Per
	Mock Exam #1 A practice IB Test	
Paper 1		
1	6	11
2	7	12
3	8	13
4	9	14
5	10	15
Paper	1 Total (out of 90)	
Transla	ted IB Score (out of 7)	

Add up your marks for question I and record it.

Paper 2		
	1	4 ,
	2	5
	3	6
	Paper 2 Total (out of 90)	
	Translated IB Score (out of 7)	

November 13, 2018

Question 2

k

(a) (a)
$$(x+3)(x+3) + (x+3)(x+5)$$

(ii)
$$222 = \frac{1}{2}x^{2} + \frac{3}{2}x + x^{2} + 5x + 3x + 15$$

$$= \frac{1}{2}x^{2} + \frac{3}{2}x + x^{2} + 5x + 3x + 15$$

$$= \frac{1}{2}x^{2} + \frac{3}{2}x + x^{2} + 5x + 3x + 15$$

$$= \frac{1}{2}x^{2} + \frac{3}{2}x + x^{2} + 5x + 3x + 15$$

$$= \frac{1}{2}x^{2} + \frac{3}{2}x + x^{2} + 5x + 3x + 15$$

$$= \frac{1}{2}x^{2} + \frac{3}{2}x + x^{2} + 5x + 3x + 15$$

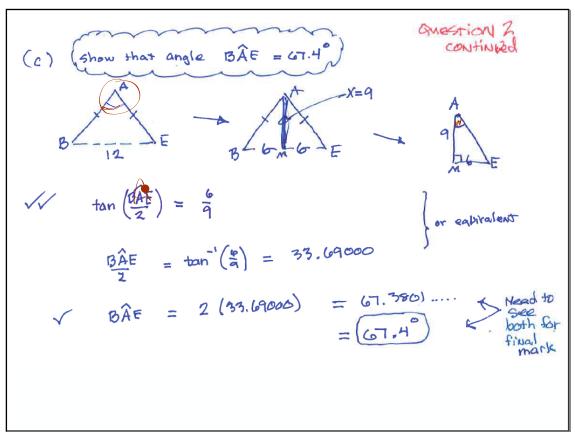
$$= \frac{1}{2}x^{2} + \frac{3}{2}x + x^{2} + 5x + 3x + 15$$

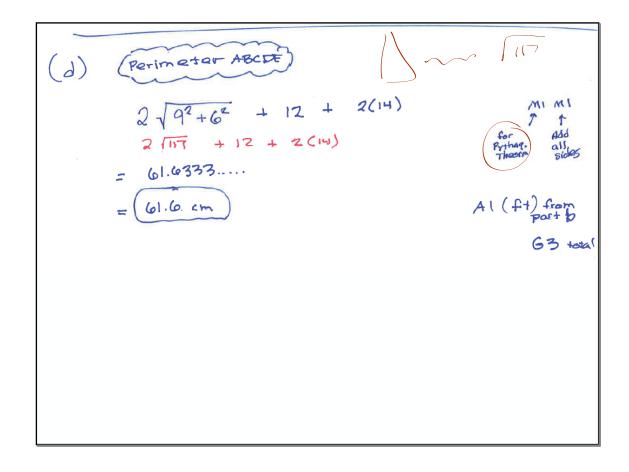
$$= \frac{1}{2}x^{2} + \frac{3}{2}x + x^{2} + 5x + 3x + 15$$

$$= \frac{1}{2}x^{2} + \frac{3}{2}x + x^{2} + 5x + 3x + 15$$

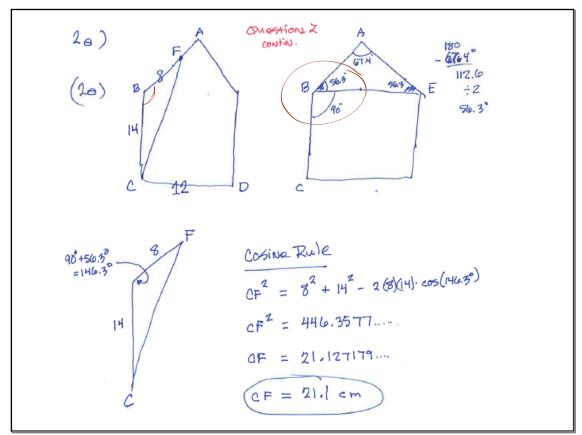
$$= \frac{1}{2}x^{2} + \frac{3}{2}x + x^{2} + x^{2}$$

(b) Find the length CD by Solving equation above


Solve
$$0 = 3x^2 + 19x - 414$$
 by grapphing or with operative formula

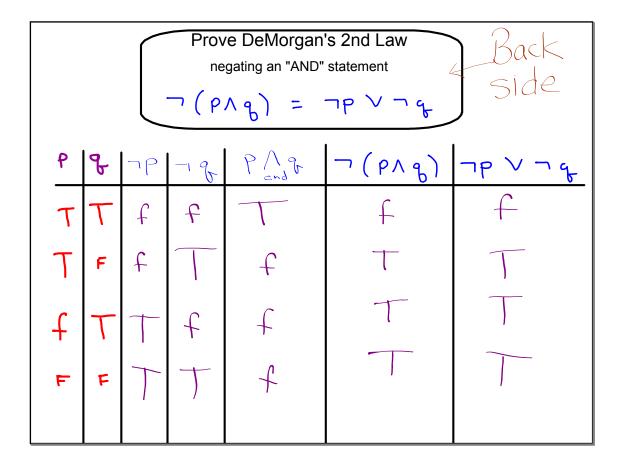

 $X = 9$
 $X = -15\frac{1}{3}$
 $(ar - \frac{41}{3})$

CD = $X + 3$ = $9 + 3$ = 12


CD = 12 cm

November 13, 2018

November 13, 2018



Pick the Warm Up

do front side only
[quickly]

$(a \lor b) \Rightarrow c$					
а	b	с	avb	с	$(a \lor b) \Rightarrow c$
Т	Т	Т	T	T	T
Т	Т	F	T	F	F
Т	F	Т	T	Τ	T
Т	F	F	7	F	F
F	Т	Т	て	Τ	T
F	Т	F		F	۴
F	F	Т	F	T	T
F	F	F	F	F	T
		7	960		

$a \Rightarrow (b \land c)$					
a	b	с	а	b n c	$a \Rightarrow b \land c$
Т	Т	Т	T	T	一
Т	Т	F	T	F	F
Т	F	Т	T	F	F
Т	F	F	T	F	F
F	(T)	T	F		T
F	Т	F	F	F	7
F	F	Т	F	٤	1
F	F	F	F	F	T

P	طق	٦٩	ر هه	PAq	7 (PN g)	77 7 7 4
Т	T	ال	1		F	F
T	F	F	+	F		
t	T	_	F	F		
F	F	+	+	F		
	•					

Any questions on Assignment 3 (assigned way last Wed)?

k

EXERCISE 15F

- 1 Write the converse and inverse for:
 - **a** If 5x 2 = 13, then x = 3.
- (a) If x = 3 then 5x 2 = 13. if $5x - 2 \ne 13$, then $x \ne 3$
- d If a figure is a parallelogram, then its opposite sides are equal in length.

If a figure has opp sides equal in length, then the figure is a parallelogram.

If a figure is not a par, then then opp sides are not -

- **3** Write down the contrapositives of these statements:
 - a All rose bushes have thorns.

same as:

If a plant is a rose bush, then it has thorns.

Contrapositive:

If a plant does not have thorns, then it is not a rose bush

No good soccer player has poor kicking skills.

Same as:

If a soccer player is no good, then they have poor kicking skills.

contrapositive:

If a soccer player does not have poor kicking skills, then the player is not a bad player.

• If a person is fair and clever then the person is a doctor.

Contrapositive:

If a person is not a doctor, then the person is not fair nor clever.

- 5 Write down the contrapositive of:
 - **b** x is a number ending in $2 \Rightarrow x$ is even

if x is odd, then x is not a number ending in 2.

pg 504 15C.... 3c

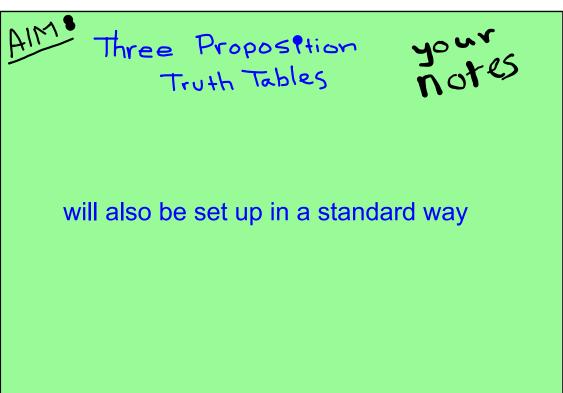
3 Use deMorgan's properties to find the negation of:

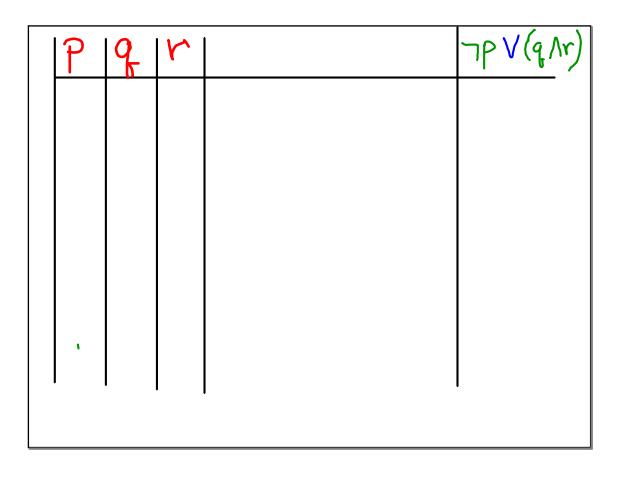
$$x < -1$$
 or $x > 7$

$$\neg (p \land q) = \neg p \lor \neg q$$

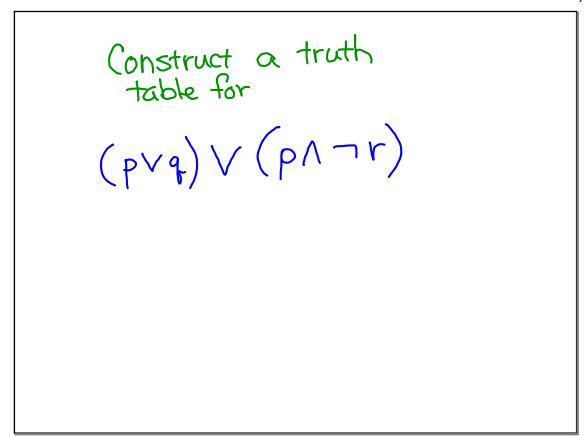
$$\neg (p \lor q) = \neg p \land \neg q$$

negation x > -1 and $x \le 7$


k November 13, 2018

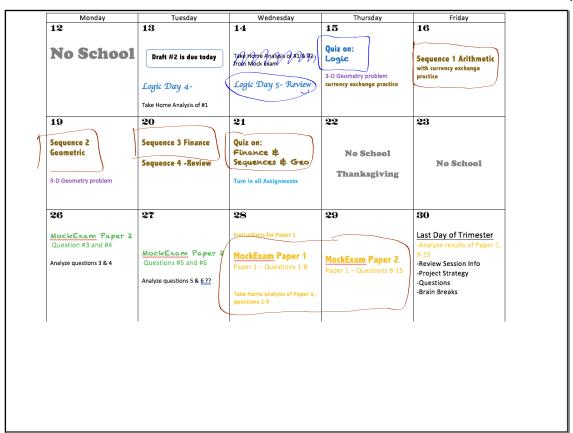

P V (7P / q)					
P 8	76	7P/q	$5 \wedge (26 \vee 6)$		
77	f	F	T		
TF	F	F	\top		
FT	—	T	T		
FF	1	F	F		

```
日日日日日日日日
```


What would be the issues with setting up a truth table for the following compound proposition?

7p V (q. 1r)




	[P	1914	70	9 AV	7PV(q1r)
T T F F F F F F F F F F F F F F F F F F	ーナナナナー・ティー	F F T		v an ei	

7	9	٢		(pVq)V(pA7r)
			How many additional columns?	

P	94	٢	1	(PVq)	(p/1r)	(pVq)V(pA7r)
<u> </u>	ナールルナールル	ナルトルプルナルー	<u>++++++++</u>	+++++	F+F+FFFF	H

Assignment:

Logic Assignment #4