<u>Agenda</u>

One project presentation

Lesson on Combining Randcom Variables

Second project presentation, more if time

Combining Random Variables

(pages 388-390)

$$Z = X + Y$$
 $Z = X - Y$

When Combining Random Variables:

The means play nice

The standard deviations don't "play n'ee".

Lesson 6.2: Day 2: How much will you make next year?

After much thought Mr. <u>Cedarlund</u> has finally decided on permanent employee wages which are randomly assigned using the probability distribution *X* given below. Additionally, at the end of every year he gives his employees an hourly raise. The bonuses are assigned randomly according to the probability distribution *Y* given below. Assume *X* and *Y* are independent.

1. Find the mean, variance and standard deviation of the probability distribution of X, the hourly wages.

X	9	12	15
Probability	0.30	0.45	0.25

Mean: ____ Variance: ____ Standard Deviation: ____

Find the mean, variance and standard deviation of the probability distribution of Y, the annual hourly raise.

Y	\$1	\$3
Probability	0.70	0.30

Mean: _____ Variance: ____ Standard Deviation: _____

Lesson 6.2: Day 2: How much will you make next year?

After much thought Mr. Cedarlund has finally decided on permanent employee wages which are randomly assigned using the probability distribution X given below. Additionally, at the end of every year he gives his employees an hourly raise. The bonuses are assigned randomly according to the probability distribution Y given below. Assume X and Y are independent.

1. Find the mean, variance and standard deviation of the probability distribution of X, the hourly wages.

$\geq x_i P_i$	

una stanaara t	actiation of	the bronabil	ity aistiibat
X	9	12	15
Probability	0.30	0.45	0.25

-<u>Z</u>(x•μ) ρ•

Mean: Variance: Standard Deviation: ____

2. Find the mean, variance and standard deviation of the probability distribution of Y, the annual hourly

Υ	\$1	\$3
Probability	0.70	0.30

Mean: _____ Variance: ____ Standard Deviation: _____

$$E(X) = \mu_X = \sum x_i p_i$$

$$Var(X) = \sigma_x^2 = \sum (x_i - \mu_x)^2 p_i$$

Lesson 6.2: Day 2: How much will you make next year?

After much thought Mr. <u>Cedarlund</u> has finally decided on permanent employee wages which are randomly assigned using the probability distribution *X* given below. Additionally, at the end of every year he gives his employees an hourly raise. The bonuses are assigned randomly according to the probability distribution *Y* given below. Assume *X* and *Y* are independent.

1. Find the mean, variance and standard deviation of the probability distribution of X, the hourly wages.

			,
X	9	12	15
Probability	0.30	0.45	0.25

Mean:

Variance:

Standard Deviation:

Find the mean, variance and standard deviation of the probability distribution of Y, the annual hourly raise.

Y	\$1	\$3
Probability	0.70	0.30

Mean:

Variance:

Standard Deviation:

- 3. Let N = the new hourly wage for the upcoming year (X + Y).
 - a. What are all the possible new hourly wages for the new year?
 - b. What is the probability of an employee being assigned a \$9 wage AND a \$1 raise? Show your work.
 - c. Complete the table below for the probability distribution of N = X + Y and find the mean and standard deviation.

N			
Probability			

Mean: Variance: Standard Deviation:

3. Let $N \Rightarrow$ the new hourly wage for the upcoming year (X + Y).

a. What are all the possible new hourly wages for the new year?

9+1 9+3

12+1	15+1
12+3	15+3

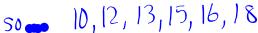
- b. What is the probability of an employee being assigned a \$9 wage AND a \$1 raise? Show $P(\$9 \cap 1) = P(\$9) \times P(1) = (.3)(.7) = .21$
- c. Complete the table below for the probability distribution of N = X + Y and find the mean and standard deviation.

N	10	/2		
Probability	2	-09		

Mean: _____ Variance: ____ Standard Deviation: ____

- 3. Let N = the new hourly wage for the upcoming year (X + Y).
 - a. What are all the possible new hourly wages for the new year?

9+1 9+3



- b. What is the probability of an employee being assigned a \$9 wage AND a \$1 raise? Show $P(\$9 \cap 1) = P(\$9) \times P(1) = (37)(7) = .21$ your work.
- c. Complete the table below for the probability distribution of N = X + Y and find the mean and standard deviation.

N	10	/2	13	15	16	18
Probability	21					

Mean: Variance: Standard Deviation:

3. Let N = the new hourly wage for the upcoming year (X + Y).

a. What are all the possible new hourly wages for the new year?

9+1 9+3

b. What is the probability of an employee being assigned a \$9 wage AND a \$1 raise? Show $P(\$9 \cap 1) = P(\$9) \times P(1) = (.30)(.7) = .21$

c. Complete the table below for the probability distribution of N = X + Y and find the mean and standard deviation.

N	10	/2	13	15	16	18
Probability	.21	.09	.315	.135	.175	.075

Mean: Variance: Standard Deviation:

NORMAL	FLOAT AL	JTO REAL	DEGREE
L1	L2	Lз	L4
10	.21		
12	.09		
13	.315		
15	.135		
16	.175		
18	.075		

$$M = 10(21) + 12(09) + \dots$$

$$= 13.45$$

$$VAR(x) = \sigma_{x}^{2} = \sum_{i=1}^{2} (x_{i} - \mu_{x})^{2} P_{i}$$

$$(10 - 13.45)^{2} (21) + (12 - 13.45)^{2} (.09)$$

$$+ \dots = 5.76$$

3. Let N = the new hourly wage for the upcoming year (X + Y).

a. What are all the possible new hourly wages for the new year?

9+1 9+3

- 15t3 12+3
- 50-10,12,13,15,16,18
- b. What is the probability of an employee being assigned a \$9 wage AND a \$1 raise? Show $P(\$9 \cap 1) = P(\$9) \times P(1) = (37)(7) = 21$ your work.
- c. Complete the table below for the probability distribution of N = X + Y and find the mean and standard deviation.

N	10	/2	13	15	16	18
Probability	.21	.09	.315	.135	.175	.075

4.93+.839

	\sim
,7	017
$I \cap O \cap A$	917
1997 +	• / • •
۷, د د	

d. If N = X + Y, complete the following in terms of X and Y:

 $\mu_{N} =$ $M_{X} + M_{Y}$

Combining Probability Distributions

Important ideas: Adding & Subtracting Random Variables

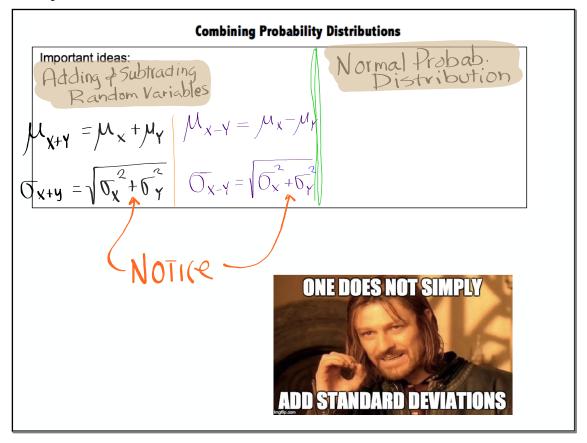
Combining Probability Distributions

Important ideas:

 $\mathcal{M}_{X+Y} = \mathcal{M}_{X} + \mathcal{M}_{Y}$ $\mathcal{O}_{X+Y} = \sqrt{\mathcal{O}_{X}^{2} + \mathcal{O}_{Y}^{2}}$ $\mathcal{O}_{X-Y} = \sqrt{\mathcal{O}_{X}^{2} + \mathcal{O}_{Y}^{2}}$

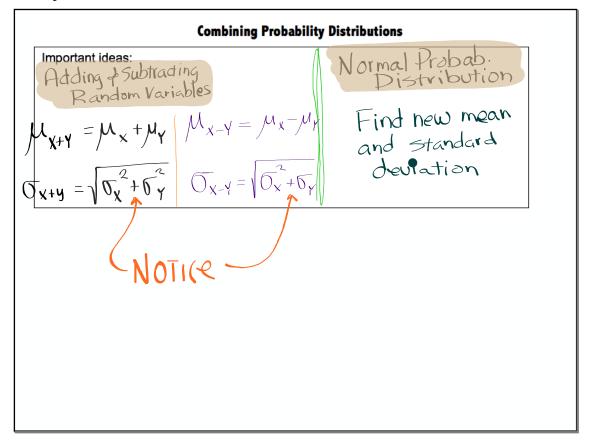
$$O_{X+y} = \sqrt{\sigma_X^2 + \sigma_Y^2} \quad O_{X+y} = \sqrt{\sigma_$$

Notes on 6.2 Day 2 November 20, 2018



CAUTION:

When we subtract two independent random variables, their variances add.



Example

A large auto dealership keeps track of sales and lease agreements made during each hour of the day. Let X = the number of cars sold and Y = the number of cars leased during the first hour of business on a randomly selected Friday. Based on previous records, the probability distributions of X and Y are as follows:

	Cars sold x _i	0	1	2	3	
	Probability p _i	0.3	0.4	0.2	0.1	
Me	an: $\mu_{\rm X} = 1.1$	Standard	l deviat	ion: $\sigma_{ m v}$	= 0.9)4:
1110	P-A			- 21		٠.
1110		0	1	2	-	/ I.
1110	Cars leased y_i Probability p_i	0 0.4	1 0.5	2 0.1	_	/ 1.

Define T = X + Y. Assume that X and Y are independent.

- 1. Find and interpret μ_T .
- 2. Calculate and interpret σ_T .

A large auto dealership keeps track of sales and lease agreements made during each hour of the day. Let X = 1 the number of cars sold and Y = 1 the number of cars leased during the first hour of business on a randomly selected Friday. Based on previous records, the probability distributions of X and Y are as follows:

Define T = X + Y. Assume that X and Y are independent.

- 1. Find and interpret μ_T . $\mu_T = 1.1 + 0.7 = 8$ cars

 Over many many Fridays, the dealer expects to sell or lease about 1.8 cars on average
- 2. Calculate and interpret σ_T . $O_T = \int_0^2 + \delta y^2 = \int_0^$

3. The dealership's manager receives a \$500 bonus for each car sold and a \$300 bonus for each car leased. Find the mean and standard deviation of the manager's total bonus B.

3. The dealership's manager receives a \$500 bonus for each car sold and a \$300 bonus for each car leased. Find the mean and standard deviation of the manager's total bonus *B*.

$$\mu_{B} = 500(4) + 300(.7)$$

$$= 550 + 210$$

$$= $760$$

3. The dealership's manager receives a \$500 bonus for each car sold and a \$300 bonus for each car leased. Find the mean and standard deviation of the manager's total bonus B.

$$\mu_{B} = 500 (4) + 300(.7)$$

$$= 550 + 210$$

$$= $760$$

Hoop Fever 1 (Mean of a sum or difference of random variables)

Hoop Fever is an arcade basketball game in which a player has 60 seconds to make as many baskets as possible. Morgan and Tim play head-to-head every Tuesday. Let \underline{M} = the number of baskets made by Morgan and T = the number of baskets made by Tim in a randomly selected match.

A. Based on previous matches, we know that $\mu_M = 39.8$ and $\mu_T = 31.2$. Let D = M - T. Calculate and interpret the mean of D.

Hoop Fever 1 (Mean of a sum or difference of random variables)

Hoop Fever is an arcade basketball game in which a player has 60 seconds to make as many baskets as possible. Morgan and Tim play head-to-head every Tuesday. Let \underline{M} = the number of baskets made by Morgan and T = the number of baskets made by Tim in a randomly selected match.

A. Based on previous matches, we know that $\mu_M = 39.8$ and $\mu_T = 31.2$. Let D = M - T. Calculate and interpret the mean of D.

SOLUTION:

$$\mu_D = \mu_M - \mu_T = 39.8 - 31.2 = 8.6$$
 baskets

The difference (Morgan – Tim) in the number of baskets made is 8.6 baskets, on average, over many randomly selected matches.

B. Based on previous matches, we know also that the *standard deviations* are $\sigma_M = 5.7$ and $\sigma_T = 10.3$. Assume that these two random variables are independent. Define D = M - T. Earlier, we found that $\mu_D = 8.6$.

Calculate and interpret the standard deviation of D.

B. Based on previous matches, we know also that the *standard deviations* are $\sigma_M = 5.7$ and $\sigma_T = 10.3$. Assume that these two random variables are independent. Define D = M - T. Earlier, we found that $\mu_D = 8.6$.

Calculate and interpret the standard deviation of D.

Because M and T are independent random variables,

$$\sigma_D^2 = \sigma_M^2 + \sigma_T^2 = 5.7^2 + 10.3^2 = 138.58$$

$$\sigma_{D} = \sqrt{138.58} = 11.77 \text{ baskets}$$

Variance

The difference (Morgan – Tim) in the number of baskets made typically varies by about 11.77 baskets from the difference in means of 8.6 baskets.

Now Normal Distribution

Suppose that T = the number of baskets made by **Tim** in a randomly selected match <u>follows an</u> <u>approximately Normal distribution</u> with $\mu_M = 31.2$ and $\sigma_T = 10.3$. Assume that these two random variables are independent and define D = M - T.

(a) Describe the distribution of D.

- Already ready for this

(b) What is the probability that Morgan will make more baskets than Tim in a randomly selected match?

(a) Describe the distribution of D.

SOLUTION:

(a) Shape: Approximately Normal

Center: $\mu_D = 39.8 - 31.2 = 8.6$ baskets

Variability: $\sigma_D = \sqrt{5.7^2 + 10.3^2} = 11.77$ baskets

(b) What is the probability that Morgan will make more baskets than Tim in a randomly selected match?

(b) What is the probability that Morgan will make more baskets than Tim in a randomly selected match?

Morgan will win if D = M-T > 0

N(86,16)

86

Difference

M-T

(b) What is the probability that Morgan will make more baskets than Tim in a randomly selected match?

Morgan will win if
$$D = M - T > 0$$

$$Z = \frac{0 - 8.6}{11.77} = -.73$$

$$Z = \frac{0 - 8.6}{11.77} = -.73$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

$$10.77$$

Notes on 6.2 Day 2 November 20, 2018

6.249, 51, 55, 57, 59,

65, 67, 73-74

study pp. 381-397 including the example on p. 387