

Reminder

A Z-score tells us the number of standard deviations above or below the mean that a value falls in a distribution.

Transforming a Random Variable (pages 382 – 388)

DESCRIBE the effect of: adding or subtracting a constant or multiplying or dividing by a constant

on the probability distribution of a random variable.

		1 from yest	erday's les	son below.		
x	1	5	7	10	15	25
Probability						

1	S.	Less	on 6.2:	Day 1: T	ime for	a Raise	
raise. H	arlund's empl e is trying to veryone's wa	decide if he	should giv				ves them a) per hour) or
1. (Copy the data	collected fr	om yesterda	ay's lesson	below.		
	x	12	5 3	7 7	10 3	15 🔿	25 ₂
	Probability	, 2/17	3/17	רו / ר	3/17	°/17	2/17
r	Mean: <u> </u>	[#] 8.59	s	tandard De	eviation: $\underline{\#}$	65C)
	·						

X – Old Wage	1	5	7	10	15	25
Y - New Wage						
Probability						
				d standard de	eviation?	ation:
w did addin					eviation?	
w did addin					eviation?	0 =
					eviation?	
v did addin					eviation?	

			what raise nd standard				es below and	d
a. (Option 1: Ac	dd \$10 per h	our to all er	nployees				
W Y	– Old /age - New /age	1	5/5	7	10 20	15 25	25	
	robability	2⁄17	3/17	7,7	3/17	0/17	2/17	
Same as previous table <i>How</i>	New Mea ∑ Ҳ v did adding	$(\mu + 10)$:	t affect the n	nean and st	New Sta	ndard Deviatio	n: 6,49 0 = 5 L1	-5 $(x-y)^2 P$ 1^2

X – Old	1	5	7	10	15	25	
Wage Z - New							_
Wage							
Probability							
w Mean (2μ) :			6 • • • •	ard Deviation:			
					de vel de vie ti		
w did multip		a constant a			dard deviati	ion?	
w did multip		a constant a			dard deviati	ion?	
ow did multip		a constant a			dard deviati	ion?	
ow did multip		a constant a			dard deviati	ion?	
ow did multip		a constant a			dard deviati	ion?	
ow did multip		a constant a			dard deviati	ion?	
ow did multip		a constant i			dard deviati	ion?	
ow did multip		a constant a			dard deviati	ion?	
ow did multip		a constant a			dard deviati	ion?	
ow did multip		a constant a			dard deviati	ion?	
ow did multip		a constant a			dard deviati	ion?	
ow did multip		a constant a			dard deviati	ion?	
ow did multip		a constant a			dard deviati	ion?	
ow did multip		a constant a			dard deviati	ion?	
ow did multip		a constant a			dard deviati	ion?	

X – Old Wage	1	5	7	10	15	25
Z - New Wage	#2	#10	#14	#20	\$30	\$50
Probability	2/17	3/17	7,-	3/17	2	2,
	$\frac{1}{100}$ 1°	8.		d Deviation:	13.0€ I3.0€ Ind deviation	
ew Mean(2μ): ow did multip	₩ _[7] 1°	8.		d Deviation:		
	₩ _[7] 1°	8.		d Deviation:		
	lying by a c	8.		d Deviation:		

These are the same results we got with transformation of summary Statistics back in Ch.2

	Transforming Probability Distributions
Important ideas:	

Check Your Understanding #1 -- Everyone gets a bonus

A large corporation has thousands of employees. The distribution of annual salaries for the employees is skewed to the right, with a mean of \$68,000 and a standard deviation of \$18,000. Because business has been good this year, the CEO of the company decides that every employee will receive a \$5000 bonus. Let X be the current annual salary of a randomly selected employee before the bonus and Y be the employee's salary after the bonus. Describe the shape, center, and variability of the probability distribution of Y.

Check Your Understanding #1 -- Everyone gets a bonus

A large corporation has thousands of employees. The distribution of annual salaries for the employees is skewed to the right, with a mean of \$68,000 and a standard deviation of \$18,000. Because business has been good this year, the CEO of the company decides that every employee will receive a \$5000 bonus. Let X be the current annual salary of a randomly selected employee before the bonus and Y be the employee's salary after the bonus. Describe the shape, center, and variability of the probability distribution of Y.

Shape: Skewed Right Center: $\mu_{r} = \mu_{x} + 5000 = 68,000 + 5,000 = #73,000$ Variability: $\sigma_{r} = \sigma_{x} = #18,000$

		Chec	k Your l	Jinderst	anung	#2				
	Let X = the numb	lership keeps trac ber of cars sold d us records, the pr	uring the fi	rst hour of	business o	n a rando		Friday.		
		Cars sold	0	1	2	3				
	-	Probability	0.3	0.4	0.2	0.1				
		alership's manager us received from c								
	ch a graph of t ability distribu	•	•				•	e gra	ph of 1	he
l	ability distribu	TION OF 1. P	10W do	their s	apes (compa	21			

P.370 Instructions to make histograms with frequencies.

- 2. Find the mean of Y.
- 3. Calculate and interpret the standard deviation of Y.
- 4. The manager spends \$75 to provide coffee and doughnuts to prospective customers each morning. So, the manager's net profit T during the first hour on a randomly selected Friday is \$75 less than the bonus earned. Describe the shape, center, and variability of the probability distribution of T.

2. Find the mean of Y. $\mu_Y = 1.1 \times 500 = #550$ 3. Calculate and interpret the standard deviation of Y. Or = 0.943 × 500 = #471.50 The bonuses typically vary by #471.50 from the mean (#550)

4. The manager spends \$75 to provide coffee and doughnuts to prospective customers each morning. So, the manager's net profit T during the first hour on a randomly selected Friday is \$75 less than the bonus earned. Describe the shape, center, and variability of the probability distribution of T. 4. The manager spends \$75 to provide coffee and doughnuts to prospective customers each morning. So, the manager's net profit T during the first hour on a randomly selected Friday is \$75 less than the bonus earned. Describe the shape, center, and variability of the probability distribution of T.

The shape will remain the same. The mean will be subtracted by 75. ($\mu = 550 - 75 = #475$) The SD does not change ($\sigma = 471.70$)

Employees selling refrigerators at an appliance store make money on commission based on how many refrigerators they sell. The number of refrigerators *R* sold in a randomly selected hour has the following probability distribution:

Number of refrigerators	0	1	2	3	4	5
Probability	0.22	0.31	0.12	0.25	0.08	0.02

Here is a histogram of the probability distribution along with the mean and standard deviation.

At this appliance store, the commission earned is \$30 for each refrigerator sold. That is, if C = total commission earned for a randomly selected hour, C = 30R.

