Turn in the Check For Understanding Questions in the basket at this time.

and pick up the Warm Up

(a) Imagine flipping a fair coin three times. Give a probability model for this chance process and be sure to justify why it is a valid model. [Hint: start by listing the sample space]

(b) Define event A as getting 2 or more heads, event B as getting no heads, and event C as getting at least one head. Find the probability of each of these events.
(c) Are any of these probabilities related?
(b) Define event A as getting 2 or more heads, event B as getting no heads, and event C as getting at least one head. Find the probability of each of these events.

$$
\begin{aligned}
& P(A)=P(2 \text { or more heads })=\frac{3}{8}+\frac{1}{8}=\frac{3+1}{8}=4 / 8 \\
& P(B)=P(\text { no heads })=1 / 8 \\
& P(C)=P(\text { at least } 1 \text { head })=\frac{3+3+1}{8}=7 / 8
\end{aligned}
$$

(c) Are any of these probabilities related?

- The events No heads and at least I head are mutually exclusive (can't happen at the sane time)
- They are also complementary events

$$
\text { so } P(B)=1-P(c)
$$

- Use a two-way table or Venn diagram to model a chance process and calculate probabilities involving two events.
- Apply the general addition rule to calculate probabilities.

$$
P(A \text { or } B)=P(A)+P(B)
$$

that's not it

if

- Stand if you are female
- Stand if you are wearing blue jeans
- Stand if you are female or wearing blue jeans
- Stand if you are female and wearing blue jeans

There are two different uses of the word or in everyday life.

When you are asked if you want "soup or salad," the waiter wants you to choose one or the other, but not both.

However, when you order coffee and are asked if you want "cream or sugar," it's OK to ask for one or the other or both.

There are two different uses of the word or in everyday life.

When you are asked if you want "soup or salad," the waiter wants you to choose one or the other, but not both.

However, when you order coffee and are asked if you want "cream or sugar," it's OK to ask for one or the other or both.

In mathematics and probability, "A or B " means one or the other or both.

How do we find probabilities from a two-way table?

I. Who owns a home? What is the relationship between educational achievement and home ownership? A random sample of 500 people who participated in the 2010 census was chosen. Each member of the sample was identified as a high school graduate (or not) and as a home owner (or not). The two-way table displays the data.

	Not a high		
	High school graduate	graduate school	Total
Homeowner	221	119	340
Not a homeowner	89	71	160
Total	310	190	500

	Not a high		
	High school graduate	graduate school	Total
Homeowner	221	119	340
Not a homeowner	89	71	160
Total	310	190	500

Define event A as being a high school graduate. Define event B as being a homeowner. Suppose we choose a member of the sample at random. Find the probability that the member:
(a) is a high school graduate.

	Not a high							
	High school graduate	school graduate	Total			221	119	340
:---	:---:	:---:	:---:					
Homeowner	89	71	160					
Not a homeowner	310	190	500					
Total								

Define event A as being a high school graduate. Define event B as being a homeowner. Suppose we choose a member of the sample at random. Find the probability that the member:

> (a) is a high school graduate.
> $P(A)=P($ high school grad $)=\frac{310}{500}$

	High school graduate	Not a high school	
	221	$\checkmark .119$	340
Homeowner	29	717	160
Not homeowner	89	190	500
Total	310		

(b) is a high school graduate and owns a home.
graduate graduate Total
(c) is a high school graduate or owns a home.
(b) is a high school graduate and owns a home.

$$
P(A \text { and } B)=P\binom{H 5}{\text { grad and homeonnea }}=\frac{221}{500}=442
$$

There's about a 44.2% chance that a randomly selected person is both a high school grad and is a homeowner.
(c) is a high school graduate or owns a home.

$$
\begin{aligned}
P(A \text { or } B)= & P(\text { grad or homeowner }) \\
= & \frac{221+89+119}{500}=\frac{429}{500} \\
& \frac{221}{500}+\frac{89}{500}+\frac{119}{500}=
\end{aligned}
$$

(d) Explain why $P(A$ or $B) \neq P(A)+P(B)$

$$
P(A \text { and } B)=\frac{221}{500} \quad P(A)+P(B)=\frac{310}{500}+\frac{340}{500} \begin{gathered}
\begin{array}{c}
\text { Not a } \\
\text { high } \\
\text { High } \\
\text { school } \\
\text { school } \\
\text { graduate graduate Total }
\end{array}
\end{gathered} \begin{gathered}
\text { Outcomes are } \\
\text { double } \\
\text { counted }
\end{gathered}
$$

(d) Explain why $P(A$ or $B) \neq P(A)+P(B)$

Because the outcomes of $P(A)+P(B)$ are double counted.

Example 2
Preferences
2. Do males and females have a different preference for math or English classes? The two-way table summarizes data about gender and subject preference for a class of 25 AP students.

	Gender			
		Male	Female	Total
Preferred subject	Math	8	12	20
	English	2	3	5
	Total	10	15	25

Suppose we choose a student from the class at random. Define event
 D as getting a male student and event E as getting a student who prefers math classes.

a) Find $P(D)$

$$
10 / 25 \quad P(\text { male student })=
$$

b) Find $\underline{P}(\mathrm{D}$ and E$)$

Suppose we choose a student from the class at random. Define event D as getting a male student and event E as getting a student who prefers math classes.
a) Find $P(D)=P($ male $)=\frac{10}{25}=0.4$
b) Find $\underline{P}(D$ and $E)$

$$
=P\left(\text { male and } P_{\text {math }} \text { prefer }\right)=\frac{8}{25}=0.32
$$

	Gender			
		Male	Female	Total
Preferred subject	Math	8	12	20
	English	2	3	5
	Total	10	15	25

c) Find $P(D$ or $E)$

$$
=P(\text { mate OR math })=\frac{2+8+12}{25}=\frac{22}{25}=.88
$$

also equal to
$P($ male $)+P($ math $)-P($ male and mat $)$

$$
=\frac{10}{25}+\frac{20}{25}-\frac{8}{25}=\frac{22}{25}
$$

$=P\left(\right.$ male and $\left.p_{\text {math }}^{\text {vern }}\right)=\frac{K}{25}=0.52^{\prime \prime}$
c) Find $P(D$ or $E)$

$$
\left.\begin{array}{l}
=P(\text { mate OR math })=\frac{2+8+12}{25}=\frac{22}{25}=.88 \\
\text { also equal to } \\
P(\text { male })+P(\text { math })-P(\text { male and mat }) \\
=\frac{10}{25}+\frac{20}{25}-\frac{8}{25}=\frac{22}{25}=0.88
\end{array}\right\} \begin{aligned}
& \text { General } \\
& \text { Addition } \\
& \text { Rule }
\end{aligned}
$$

Venn Diagrams and Probability
 (pages 322-325)

You can see why

$P(A)$ and $P\left(A^{c}\right)$ add up to 1

Intersection
(football)

Union

HINT: To keep the symbols straight, remember

U for Union and
\cap for intersection.

3. Where are the best tacos?

A survey of all students at a large high school revealed that, in the last month, 38% of them had dined at Taco Bell, 16% had dined at Chipotle, and 9% had dined at both. Suppose we select a student at random. What's the probability that the student has dined at Taco Bell or Chipotle in the last month?

Now create a Venn Diagram to display the sample space in a different way.

3. Where are the best tacos?

A survey of all students at a large high school revealed that, in the last month, 38% of them had dined at Taco Bell, 16% had dined at Chipotle, and 9% had dined at both. Suppose we select a student at random. What's the probability that the student has dined at Taco Bell or Chipotle in the last month?

Now create a Venn Diagram to display the sample space in a different way.

$$
\begin{aligned}
& \text { Left Pacman } \\
& \text { Right Pacman } \\
& \text { football }
\end{aligned}
$$

Probability, General Addition Rule, and Venn Diagrams

Probability, General Addition Rule, and Venn Diagrams
TWO Way Tables General Addition Rule and VENN DAGCiams

Probability, General Addition Rule, and Venn Diagrams
Big Ideas:
Two way Tables
and VenN DiAGrams
$B B^{c}$

1	2	
	3	4

Probability, General Addition Rule, and Venn Diagrams Iiqluas: way Tables GeNeral Addition Rule
 $B B^{c}$
 If A and B are mutually exclusive $P(A \circ r B)=P(A)+P(B)=0$ no overlap.
\square

Gheck Your Understanding:

What is the relationship between educational achievement and home ownership? A random sample of 500 U.S. adults was selected. Each member of the sample was identified as a high school graduate (or not) and as a homeowner (or not). The two-way table displays the data

Suppose we choose a member of the sample at random. Define events

G : person is a high school graduate

H : person is a homeowner.

	High school graduate	Not a high school graduate
Homeowner	221	119
Not a homeowner	89	71

1. Explain in plain language what $P\left(\mathrm{G}^{\mathrm{c}}\right)$ means and find the probability.
2. Explain why $\underline{P(\mathrm{G} \text { or } \mathrm{H}) \neq P(\mathrm{G})+P(\mathrm{H}) \text {. Then find } \underline{\underline{P(G} \text { or } \mathrm{H}) \text {. }} \text {. } \mathrm{F} \text {. }}$
3. Make a Venn diagram to the right to display the sample space of this chance process.

4. Explain in plain language what $P\left(G^{C}\right)$ means and find the probability.

The probability the person is not a high school grad.

$$
P\left(G^{c}\right)=190 / 500=.38
$$

2. Explain why $P(G$ or $H) \neq P(G)+P(H)$. Then find $P(G$ or $H)$.

There are people who graduated and own a home so they were counted twice.

$$
P(G \text { or } H)=\frac{310+340-221}{500}=\frac{429}{500}=.858
$$

3. Make a Venn diagram to the right to display the sample space of this chance process.

4. Write the event "is not a high school graduate but is a homeowner" in symbolic form and find the probability.

$$
P\left(\mathbb{G}^{c} \cap H\right)=\frac{119}{500}=.238
$$

$5.2 \ldots . .41,47,49,51,53,55-58$
and study pp.318-325

