November 16, 2018

Examine the graph of $f(x)=|x-3|+1$ at right. Use the graph to find the values listed below.
a. $f(3)=$

b. $f(0)$

November 16, 2018
(3)

Use the graph of $f(x)=|x-3|+1$
to solve the equations and inequalities below.
a. $|x-3|+1=1$
b. $|x-3|+1 \leq 4$

c. $|x-3|+1=3$
d. $|x-3|+1>2$

1. A rectangular pond 5 meters by 7 meters is going to be built. The builders want the pond to be surrounded by a walkway x meters wide.

The area of the concrete walkway (not including the pond) is to be $115 \mathrm{~m}^{2}$. Calculate the value of the width of the concrete to make this happen. show your process.
2. Abraham brags, "My cell phone plan is the best! I pay just $\$ 25$ per month, and then $\$.10$ per minute." Abbott quickly counters, "Well my cell phone plan is even better! I only pay $\$ 20$ per month and then $\$.12$ per minute." What do you, think: who has the better cell phone plan? Explain completely.
check

$$
\begin{aligned}
& 2 x^{2}+5 x-3 \leq x^{2}+4 x+3 \\
& 2(-1)^{2}+5(-1)-3 \leq(-1)^{2}+4(-1)+3
\end{aligned}
$$

53
b] $5[\sqrt{x-2}+1]=15$
(a) $5-3\left(\frac{1}{2} x+2\right)=-7$
[c] $12-\left(\frac{2}{3} x+x\right)=2$
(d) $-3(2 x+1)^{3}=-192$

$$
(2 x+1)^{3}=64
$$

The AIM

for the next few days...

1. Solve single variable inequalities
2. Graph two variable inequalities
Z. solve systems of two variable inequalities
3. Solve single variable inequalities
$2 x-1 \geq 7 x^{2}-5$

2 Graph two variable inequalities

$$
x-2 y>x+1
$$

3. solve systems of two variable inequalities

$$
\begin{aligned}
& y \geq 2 x^{2}+5 x-3 \\
& y<x^{2}+4 x+3
\end{aligned}
$$

AIM
 Solve
 single variable inequalities

SCHEDULE FOR TODAY:

hANDOUT
THEN NOTES

1 Use the boundary method to solve the one variable inequality $2 x-1 \geq 7$ by doing the following:
a) Change the inequality into anequation to find the boundary point.

$2 x=8$

boundary
point

$$
\text { TEST } x=2
$$

$$
2(2)-1 \geq 7
$$

b) You should have found 4 to be the boundary point. Now choose a test point. (a number bigger or smaller than 4). Test your point in the original inequality. Then write the final solution of your inequalityand represent it on the number line above.
c) Now solve the original inequality $2 x-1 \geq \mathbf{7}$ algebraically to verify above.

the "direct" way doesn't always work with all types of functions so the test point method is necessary.

Use the boundary method to solve the one variable quadratic inequality $x^{2}-2 x<0$ by:
a) Change the inequality into anequation to find the boundary points).

b) Choose a test point between your two test points. (between 0 and 2) Use your results to write the solution and shade the number line accordingly.

> The solutions to single variable inequalities can always be shown on a number line.

\square

$-2 \leq x \leq 5$

EXAMPLE 2
consider the inequality $4|x+1|-2>6$
票 Find boundary point（s）by changing it to an equation

Then use a test point to help determine the solutions

\square

$$
\begin{gathered}
\text { Now Graphically (GDC) } \\
4|x+1|-2>6
\end{gathered}
$$

When are the y-values of
$4|x+1|-2$
higher than the y-values of

Now solve the whole
inequality algebraically

$$
4|x+1|-2>6
$$

Solve $x^{2}-5>4 x$ using the boundary point method Boundary points)

Now graphically $x^{2}-5>4 x$

\square

handout called "Assignment 4.2.1"
you will need your textbook, FYI
4...65, 66ab, 67, 68a, 69ac, 70
10. 1011 l
12..7ve
for tomorrow's class
(with sub)

1. LCQ (partner)
2. Work on Assignment
