pick Up the Warm Up

Single Variable Inequality answer can be displayed on a number line

Solve directly (if possible)
A) find boundary points
B) Test a point or two

Solve the inequality using either method or solve using both methods if you want the practice).

$$
\begin{aligned}
& \frac{1(10 x)}{2 x} \geq \frac{1(10 x)}{2}_{-\frac{2(10 x)}{5 x}}^{5} \\
& 5 \geq 5 x-4 \\
&+4 \\
& 9 \geq 5 x \\
& \text { divedinys } \\
& 1.8 \geq x \\
& x \leq 1.8
\end{aligned}
$$

Boundary Point Method

$$
\frac{1}{2 x} \geq \frac{1}{2}-\frac{2}{5 x}
$$

Direct (if possible)

$$
\frac{1}{2 x}>\frac{1}{2}-\frac{2}{5 x}
$$

(3)

$$
\begin{aligned}
& \frac{6\left|\frac{2 x+5}{6}\right| \geqslant \frac{6 x+24}{6}}{||2 x+5|>x+4}
\end{aligned}
$$

$$
\begin{aligned}
& \underset{-1}{2 x+5 \gg-y} \underset{-y}{x+4} \\
& 2 x+5<-(x+4) \\
& x+5>\frac{4}{5} \\
& \underset{+x}{2 x}+5<-\underset{+x}{-x-4} \\
& x>-1 \quad 3 x+5<-5<-3 \\
& x<-3 O R x>-1 \\
& \begin{aligned}
3 x & <-9 \\
x & <-3
\end{aligned}
\end{aligned}
$$

is so complex we won't be able to use either method. So we'll have to be happy with an approximate answer.

Strategy: Break the L and R side into a system and analyze the graph.

$(x-4)^{3}+6 \leq x-4$

1. Graph to find the intersections of the Left and Right Functions
2. Find the boudary points), mark on a number line.
3. Test a point. Decide which area to shade.

Reminders

		22	23	24
$\text { Ch. } 4 \text { (4.2.2) }$ Solving Problems using Systems	Review Ch. 4 Turn in Notebook today	Test on Ch. 4 Turn in Ch 4 HW	No School Thanksgiving	No School
26	27	28	29	30
Final Exam Review Day \#1	Final Exam Review Day \#2 Turn - in textbooks today	Final Exam Part 1	Final Exam Part 2	\checkmark Grades \checkmark Brain Breaks \checkmark Advice for Alg 2B

Ch 4 Test Information Sheet

completing the square to solve the equation

$$
\# 70
$$

70

$$
\left(\frac{12}{2}\right)^{2}
$$

$$
\begin{aligned}
& \underbrace{x^{2}+12 x}+15=-75 \quad \begin{array}{c}
\text { Solve by } \\
\text { completing } \\
\text { the } \\
\text { square }
\end{array} \\
& (x+6)^{2}=96 \\
& \sqrt{x}+36
\end{aligned}
$$

$$
\begin{gathered}
2 x+y=12 \\
x y=16
\end{gathered}
$$

ON HW
(a) $5-(y-3)=3 x$
(b) $\quad 4(x+y)=-2$

67
a)

$$
\begin{gathered}
5-(y-3)=3 x \\
-5 \\
-(-3-3)=3 x-5 \\
-y+3=3 x-5 \\
-3 \\
-1 y=3 x-8 \\
\text { multply all yerms by }(-1) \\
y=-3 x+8
\end{gathered}
$$

(b) $4(x+y)=-2$

$$
y=-x-\frac{1}{2}
$$

68 A

$$
\begin{aligned}
& (y-3)^{2}=2 y-10 \\
& (y-3)(y-3)=2 y-10 \\
& y^{2}-3 y-3 y+9=2 y-10 \\
& y^{2}-6 y+9=2 y-10 \\
& y^{2}-8 y+19=0
\end{aligned}
$$

so now try the Quadrate Formula

$$
a=1 \quad b=-8 \quad c=19
$$

\square

$$
\begin{array}{r}
a=1 \quad b=-8 \quad c=19 \\
x=\frac{-(1) \pm \sqrt{()^{2}-4(x)}}{2()}
\end{array}
$$

$$
\begin{aligned}
& \frac{2 m^{2}+7 m-15}{m^{2}-16} \cdot \frac{m^{2}-6 m+8}{2 m^{2}-7 m+6} \\
& \frac{(m+5)(2 m-3)}{(m+4)(m-4)} \cdot \frac{(m-2)(m-4)}{(m-2)(2 m-3)}
\end{aligned}
$$

$65 a-3 x+2 \geq x-6$
Bound. P4s

$$
\begin{aligned}
3 x+2 & =x-6 \\
2 x+2 & =-6 \\
2 x & =-8 \\
x & =-4
\end{aligned}
$$

Aim: Solve/graph
Two Variable Inequalities and systems

Is $x=-4$ solution to....

$$
y \geq 2 x^{2}+5 x-3
$$

Whaaaat?
true

In that case is $(-3,0)$ a solution ? to....

$$
\begin{aligned}
& y \geq 2 x^{2}+5 x-3 \\
& 0 \geq 2(-3)^{2}+5(-3)-3 \\
& 0 \geq 18-15-3 \\
& 0 \geq 0
\end{aligned}
$$

true
but there a few more an infinite number to be exact
weill show them graphically

To solve a 2 -variable inequality:

1. Change to an equation.
2. Solve for y (if possible)
3. Graph the boundary function.
4. Then test a point, above or below,
5. Then shade the appropriate side.
\square

Solve $y \geq 2 x^{2}+5 x-3$
(1) and (2) $y=2 x^{2}+5 x-3$
(1) and
(3) Graphy
(4) TeST
$(0,0)$

$0 \geq 2(0)^{2}+5(0)-3$
$0 \geq-3$
true
(B) $y<|x-3|+1$
(2) bound. $y=|x-3|+1$

$$
\begin{aligned}
& \text { (4) } \operatorname{TeST}(0,0) \\
& 0<|0-3|+1 \\
& 0<3+4 \\
& 0<4 \text { fros. }
\end{aligned}
$$

(C) Solve
(I) $y \geq 2 x+1$
(II) $y \leq \frac{1}{2} x+3$

boundary equations

$$
\begin{aligned}
& y=2 x+1 \\
& y=\frac{1}{2} x+3
\end{aligned}
$$

(I) test $(0,0)$
(II) $\operatorname{Test}(0,0)$
$0 \geq 2(0)+1$
$0 \leq \frac{1}{2}(0)+3$
$0 \geq 1$
$0 \leqslant 3$ false
(D)

$$
\begin{aligned}
& \text { with the help } \\
& \text { of } G D C \\
& y \geq 0.2(x-5)^{2}-2 \\
& y \leq \frac{1}{2} x+4
\end{aligned}
$$

November 19, 2018

4 73ab, 74, 76-77, 84, 87

