Pick Up The
Warm up
[I will pass back the LCQ from last wed.]

Later in the period you will
see your Ch. 3 TeST
(1) Use the method of x-intercepts to solve the equation:

$$
x^{2}-8 x+10+2 \sqrt{3-x}=
$$

Y,

$$
y=a(x-10)^{2}+9
$$

Consider the parabolic paths of two soccer penalty kicks, represented in the graph at right. One kick covers a horizontal distance of 20 yards and reaches a maximum height of 9 yards. The other kick covers a horizontal distance of 24 yards, but only reaches a maximum height of 6 yards.

Find an equation that describes the path of each kick.

> transformed
parabola

$$
y=a(x-h)^{2}+k
$$

$$
\begin{array}{rr}
y=a(x-10)^{2}+9 & \begin{array}{l}
\text { Substitute in a } \\
\text { point on the curve }
\end{array} \\
0=a(20-10)^{2}+9 & \text { (not the vertex) } \\
0 & =100 a+9 \\
& \\
a & =-\frac{9}{100} \\
& =-.09
\end{array}
$$

$$
\begin{aligned}
y= & a(x-10)^{2}+9 \\
0= & a(20-10)^{2}+9 \\
0 & =100 a+9 \\
& \\
a & (20,0) \\
a & -\frac{9}{100} \\
= & -.09
\end{aligned}
$$

$$
\begin{aligned}
y=a(x-10)^{2}+9 & \text { Substitute in a } \\
0=a(20-10)^{2}+9 & \text { point on the curve } \\
0 & =100 a+9
\end{aligned} \quad \text { (not the vertex) }
$$

Consider the parabolic paths of two soccer penalty kicks, represented in the graph at right. One kick covers a horizontal distance of 20 yards and reaches a maximum height of 9 yards. The other kick covers a horizontal distance of 24 yards, but only reaches a maximum height of 6 yards.

Find an equation that describes the path of each kick.

$$
y=\frac{-1}{24}(x-12)^{2}+6
$$

Consider the parabolic paths of two soccer penalty kicks, represented in the graph at right. One kick covers a horizontal distance of 20 yards and reaches a maximum height of 9 yards. The other kick covers a horizontal distance of 24 yards, but only reaches a maximum height of 6 yards.

Find an equation that describes the path of each kick.

$$
y=\frac{-1}{24}(x-12)^{2}+6
$$

HW Questions

I will be passing out the LCQ solutions

4-30. Consider the graphs of $f(x)=\frac{1}{2}(x-2)^{3}+1$ and $g(x)=$ $2 x^{2}-6 x-3$ at right. Homework Help
a. Write an equation that you could solve using points A and B. What are the solutions to your equation?

Substitute them into your equation to show that they
work.
b. Are there any solutions to the equation in part (a) that do not appear on the graph? Explain. Yes
c. Write an equation that you could solve using point C. What does the solution to your equation appear to be? Again, substitute your solution into the equation. How close was your estimate?
d. What are the domains and ranges of $f(x)$ and $g(x)$?

$32 d$

$$
\begin{aligned}
& (x-4)^{2}+(y-1)^{2}=10 \\
& (y-1)^{2}=10-(x-4)^{2} \\
& y=1= \pm \sqrt{10-(x-4)^{2}} \\
& y=1 \pm \sqrt{10-(x-4)^{2}}
\end{aligned}
$$

\square
(7) $(x-2)^{2}-3=1$
$10 b$
DC

Bench12				
Monday	Tuesday	Wednesday	Thursday	Friday
12		14		16
No School	$\begin{aligned} & 4.1 .2 \\ & \text { Day B } \end{aligned}$ Solving Equations and Systems Graphically	4.1.3 Finding Multiple Solutions to Systems	4.1.4 Use Systems of Equations to Solve Problems	4.2 Day 1 Solving Inequalities
19	20	21	22	23
4.2 Day 2 Solving Inequalities	Ch. 4 Closure	Ch. 4 Test	No School Thanksgiving	No School
26	27	28	29	30
				Last Day of Trimester
Review for Trimester Exam - Day 1	Review for Trimester Exam -Day 2	Final Exam Part 1	Final Exam Part 2	Go over Final Exam See Final Grades Lots of Brain Breaks

Ais
Validate solutions because sometimes "good" solutions are "naughty"

Approximate solutions when an al gebraic solution is not possible.
\square

Use algebraic Strategies to Solve

$$
\sqrt{2 x+3}=x
$$

square

$$
x=3 \quad x=-1
$$

$$
\begin{aligned}
& x=3 \\
& x=-1
\end{aligned}
$$

We should have got two apparent solutions

$$
\begin{aligned}
& x=-1 \\
& x=3
\end{aligned}
$$

now do an algebraic check in the original equation

$$
\begin{aligned}
& \text { check } x=-1 \\
& \sqrt{2(-1)+3}=(-1)
\end{aligned}
$$

$\sqrt{1}$

$$
\sqrt{2 x+3}=x
$$

$$
\sqrt{2(3)+3}=(3)
$$

$$
1=-1
$$

false

$$
\sqrt{2 x+3}=x
$$

$$
\sqrt{1}
$$

check $x=-1$
check $x=3$

$$
\begin{array}{rlr}
\sqrt{2(-1)+3}=(-1) & \sqrt{2(3)+3} & =(3) \\
\sqrt{1}=(-1) & \sqrt{9} & =3 \\
1 \neq-1 & 3 & =3 \\
\therefore x=-1 & \text { is } & x=3 \frac{i s}{s o l n t i o r}
\end{array}
$$

$$
\begin{aligned}
& \text { Validate } \\
& \text { Graphically }
\end{aligned}
$$

$$
{\underset{Y}{Y_{1}}}_{\sqrt{2 x+3}}^{Y_{2}}
$$

why did the extraneous solutions appear?

If the sideways parabola is completed, it would intersect at $x=-1$

The graph of $y=\sqrt{2 x+3}$ did not intersect because
 $\sqrt{2 x+3}$ has no negative values

Equations with radicals
called radical equations, commonly have solutions that have extraneous solutions

Every group needs
Leader
Runner
Player (1 or 2)

Runners
Be prepared to show proof on part a
Leaders
Get a consensus answer on part b and be prepared to share it with the class.

$$
20 x+1=3^{x}
$$

(a)
what were the solutions?
How did you prove they were solutions?

$$
\begin{gathered}
x=0 \\
20(0)+1=3 \\
\end{gathered}
$$

$$
x=4
$$

$$
\begin{array}{r}
20(4)+1=3^{4} \\
80+1
\end{array} \sum_{81=81}^{\sum}
$$

$X=1.696 E-16 \quad Y=0$

$$
1.696 \times 10^{-16}
$$

(b) Are the solutions a single number?
or
or be the coordinates of a point?

$$
20 x+1=3^{x}
$$

The original equation $20 x+1=3^{x}$ only has one variable so the solutions are the x-coordinates of the points of intersection.

$$
x=0 \quad x=4
$$

move on to

(c)

$$
20 x=3^{x}-1
$$

$$
x=0 \quad x=4
$$

4.... 22-25, 27-28

26 a an optional problem, not for extra credit.... just for the challenge (fun) of it.

