Pick Up The Warm up

[I will pass back the LCQ from last Wed.]

Later in the period you will See your Ch. 3 Test

1) Use the method of x-intercepts to solve the equation

$$x^2 - 8x + 10 = -2\sqrt{3-x}$$

$$x^{2}-8x+10+2\sqrt{3}x=0$$

$$y = a(x-10)^2 + 9$$

Consider the parabolic paths of two soccer penalty kicks, represented in the graph at right. One kick covers a horizontal distance of 20 yards and reaches a maximum height of 9 yards. The other kick covers a horizontal distance of 24 yards, but only reaches a maximum height of 6 yards.

Find an equation that describes the path of each kick.

Consider the parabolic paths of two soccer penalty kicks, represented in the graph at right. One kick covers a horizontal distance of 20 yards and reaches a maximum height of 9 yards. The other kick covers a horizontal distance of 24 yards, but only reaches a maximum height of 6 yards.

Find an equation that describes the path of each kick.

$$y = a(x-10)^{2} + 9$$

$$0 = a(20-10)^{2} + 9$$

$$0 = 1000 a + 9$$

$$0 = -\frac{9}{100}$$

$$= -\frac{9}{100}$$

Substitute in a point on the curve (not the vertex)

$$y = a(x-10)^{2}+9$$

$$0 = a(x-10)^{2}+9$$

$$0 = 100a +9$$

$$(20,0)$$

$$7$$

$$Q = -\frac{9}{100}(x-10)^{2}+9$$

$$= -09$$

$$y = a(x-10)^{3}+9$$
Substitute in a
$$0 = a(20-10)^{2}+9$$

$$0 = 1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$10$$

Consider the parabolic paths of two soccer penalty kicks, represented in the graph at right. One kick covers a horizontal distance of 20 yards and reaches a maximum height of 9 yards. The other kick covers a horizontal distance of 24 yards, but only reaches a maximum height of 6 yards.

Find an equation that describes the path of each kick.

$$y = -\frac{1}{24}(x-12)^{3} + 6$$

Consider the parabolic paths of two soccer penalty kicks, represented in the graph at right. One kick covers a horizontal distance of 20 yards and reaches a maximum height of 9 yards. The other kick covers a horizontal distance of 24 yards, but only reaches a maximum height of 6 yards.

Find an equation that describes the path of each kick.

$$y = -\frac{1}{24}(x - 12)^{2} + 6$$

HW Questions

I will be passing out the LCQ solutions

4-30. Consider the graphs of
$$f(x) = \frac{1}{2}(x-2)^3 + 1$$
 and $g(x) = 2x^2 - 6x - 3$ at right. Homework Help

a. Write an equation that you could solve using points *A* and *B*. What are the solutions to your equation?

Substitute them into your equation to show that they work.

- b. Are there any solutions to the equation in part (a) that do not appear on the graph? Explain. $\sqrt{\rho}$
- c. Write an equation that you could solve using point C. What does the solution to your equation appear to be? Again, substitute your solution into the equation. How close was your estimate?
- d. What are the domains and ranges of f(x) and g(x)?

$$(x-4)^{2} + (y-1)^{2} = 10$$

$$(y-1)^{2} = 10 - (x-4)^{2}$$

$$y = 1 = \pm \left[10 - (x-4)^{2} \right]$$

$$y = \frac{1}{2} + \left[10 - (x-4)^{2} \right]$$

106

	Monday 12	Tuesday 13	Wednesday	Thursday 15	Friday
4.2 Day 2 Solving Inequalities Ch. 4 Closure Ch. 4 Test No School Thanksgiving No School 26 27 28 29 30	No School	Day B Solving Equations and Systems	Finding Multiple Solutions to	Use Systems of Equations to	Day 1
	4.2 Day 2			No School	
Review for Trimester Exam - Day 1 Review for Trimester Exam - Day 2 Final Exam Part 1 Final Exam Part 2 Last Day of Trimester Go over Final Exam See Final Grades Lots of Brain Breaks	Review for Trimester	Review for Trimester	Final Exam	Final Exam	Last Day of Trimester Go over Final Exam See Final Grades

AIMS

Valedate salutions because sometimes "good" solutions are "naughty"

Approximate solutions when an algebraic solution is not possible.

(alculators upside down/off

Use algebraic strategies to solve

$$Qx+3 = \chi^{2}$$

$$Q = \chi^{3}-3x-3$$

$$\chi = 3 \quad \chi = -1$$

$$X=3$$

 $X=-1$

We should have got two apparent solutions

$$\chi = -1$$
 $\chi = 3$

now do an algebrate check in the original equation

check X=-1

check X=-1

check X=-3

$$\sqrt{2(-1)+3} = (-1)$$

$$\sqrt{2}(-1)+3 = (-1)$$

$$\sqrt{2}(-1)+3 = (-1)$$

$$\sqrt{2}(-1)+3 = (-3)$$

$$\sqrt{2}(-1)$$

check X=-1

check X=-1

$$\sqrt{2(-1)+3} = (-1)$$
 $\sqrt{2(-1)+3} = (-1)$
 $\sqrt{2($

Validate Graphically

$$\sqrt{\frac{2x+3}{2x+3}} = x$$

$$\frac{1}{2}$$

Why ded the extraneous solutions appear?

If the sideways parabola is completed, it would itersect at X=-1

The graph of $y = \sqrt{2x+3}$ ded not intersect because $\sqrt{2x+3}$ has no negative values

Equations with radicals

called radical equations, commonly have solutions that have extraneous solutions

Start With atb

Runners Be prepared to show proof on part a

Leaders

Get a consensus answer on part b and be prepared to share It with the class.

 $20x + 1 = 3^{x}$

a what were the solutions?

How did you prove they were solutions?

2 DAy b

$$X = 0$$
 $X = 4$
 $20(0) + 1 = 3$
 $80 + 1$
 $81 = 81$

b) Are the Solutions?
a single number?
or
or be the coordinates
of a point?

$$\chi = 4$$

The original equation $20x + 1 = 3^{x}$ only has one variable so the solutions are the x-coordinates of the points of intersection.

$$\chi=0$$
 $\chi=4$

$$20x + | = 3^{*}$$

$$20x = 3^{*}$$

(c)
$$20x = 3^{x} - 1$$

$$x = 0 \quad x = 4$$

$$X = 0$$
 $X = 4$

B.B.

See your Test Notes 4.1.2 DAy b November 13, 2018

4 22 -25, 27-28

26 a an optional problem, not for extra credit.... just for the challenge (fun) of it.

•