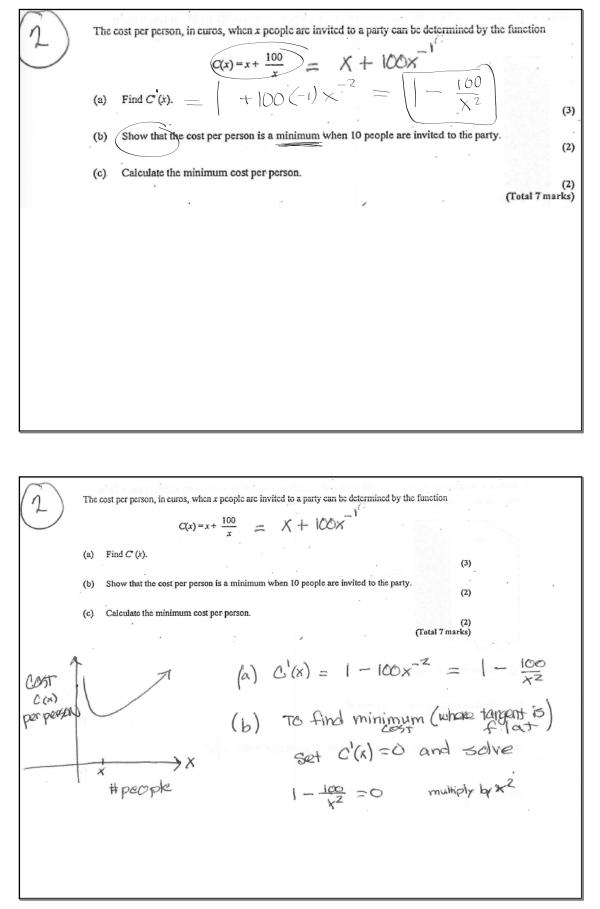


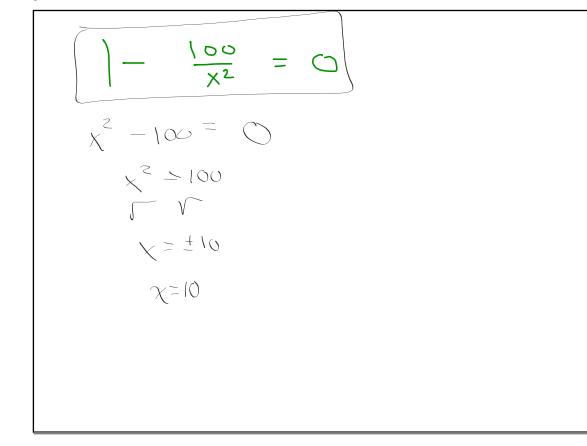
(c) Hence show that the volume V of the box is given by
$$V = 100x - \frac{4}{3}x^3$$

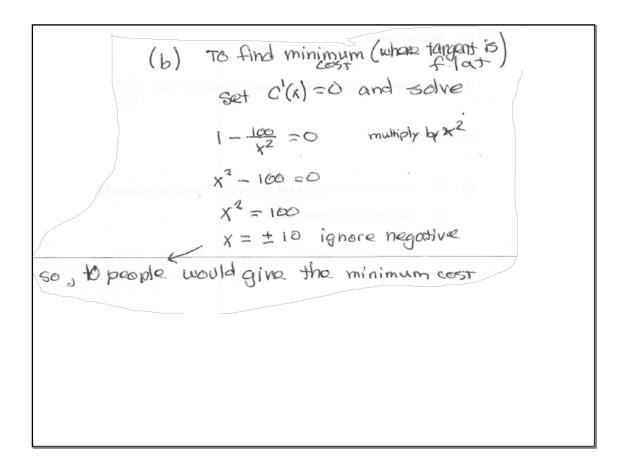
Volume = $(2x)(x)y$
 $= \frac{1}{2}x \cdot x \cdot \frac{300 - 4x^2}{3.49x} = \frac{x(300 - 4x^2)}{3} = \frac{300x - 4x^2}{3}$
(d) Find $\frac{dV}{dx} = 100 - \frac{4}{3}x^{3x^2} = \frac{300x - 4x^2}{3}x^{3x^2} = \frac{300x - 4x^2}{3}x^{3x^2}$
 $= \frac{100 - 4x^2}{3}x^{3x^2}$

Hence find the value of x and of y required to make the volume of the box a maximum. (e) (i) Calculate the maximum volume. **(ii)** (5) (Total 13 marks) $100 - 4\chi^2 = 0$ maximum Volume ocurrs when 4x² = 100 tangent is flat $x^2 = \pm 5$ (gradient = 0)ignore negative dimension Set $\frac{dV}{dk}$ equal to 0 X=5 is the optimum dimension

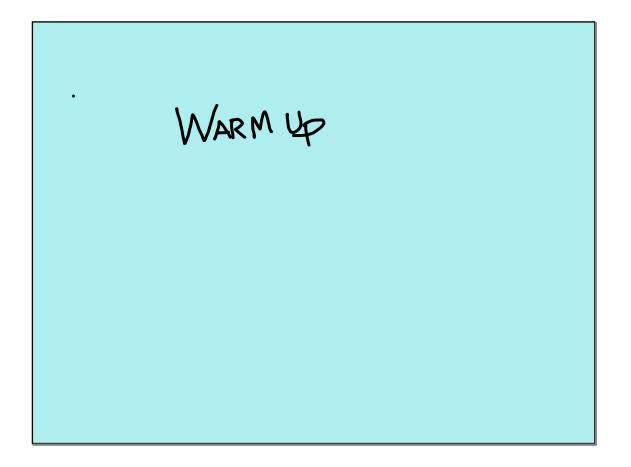
(e) (i) Hence find the value of x and of y required to make the volume of the box a maximum.
(ii) Calculate the maximum volume.
(5)
(Total 13 marks)
(5)
(Total 13 marks)
(5)
(Total 13 marks)
(6)
(7)
(100 -
$$4|\chi^2 = 0$$
 MAX Volume
100 - $4|\chi^2 = 0$ MAX Volume
100 - $4|\chi^2 = 100$ V = $100\chi - \frac{4}{3}\chi^3$
(gradient = 0) $\chi^2 = \pm 5$ = $100(5) - \frac{4}{3}(5)^3$
ignore
negative
negative
 $\chi = 5$
(n)
(olume = $2\chi^2\gamma$
 $333 = 2(5)^2\gamma$
(y = 6.66 cm)

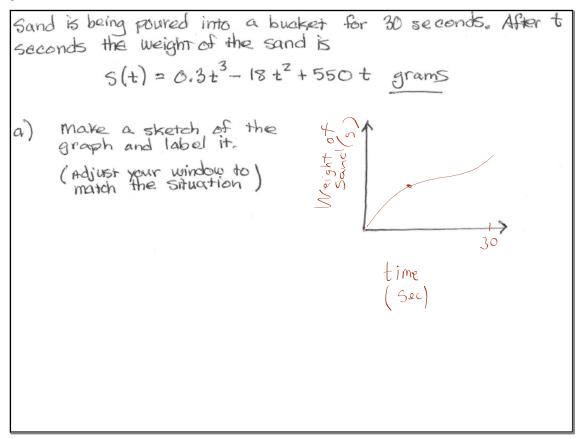




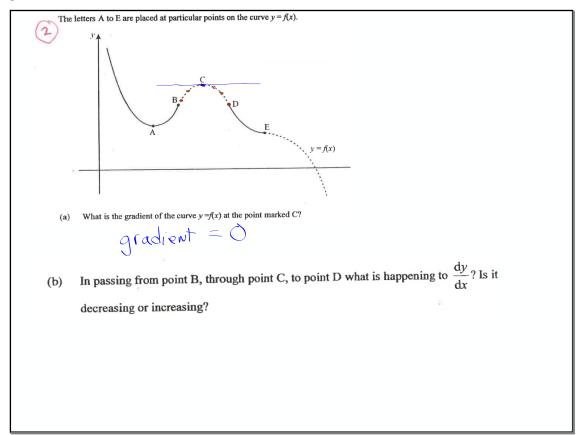


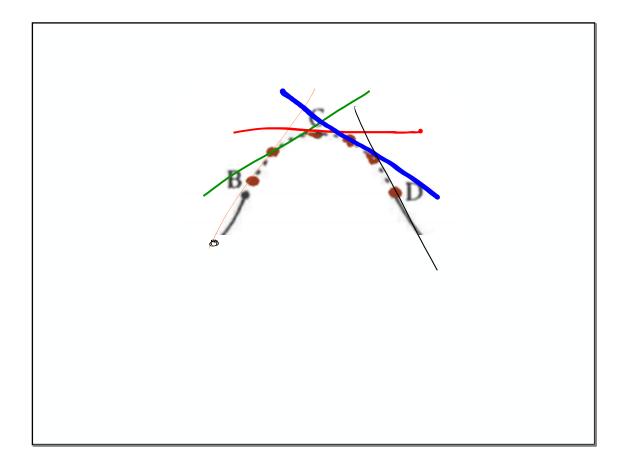
(c) Minimum Cost = $C(1b) = X + \frac{100}{X}$ = 10 + 100 = 20 So the minimum cost par person is \$20 (which occurs when 10 people are invited)

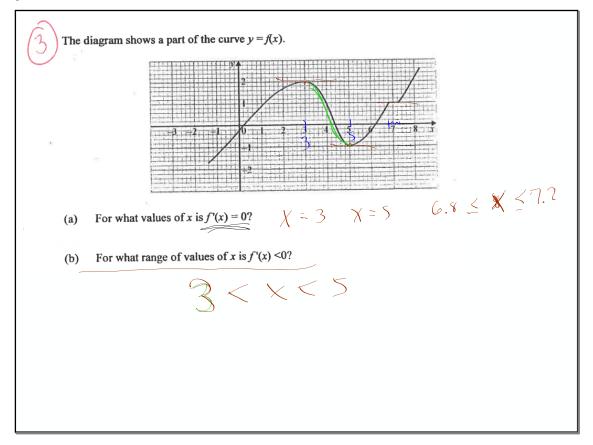


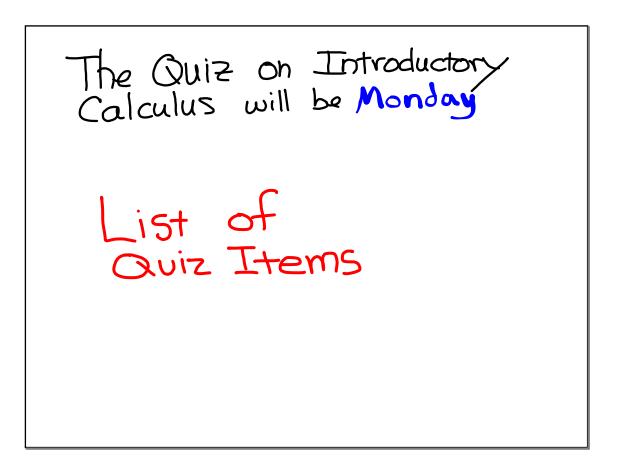


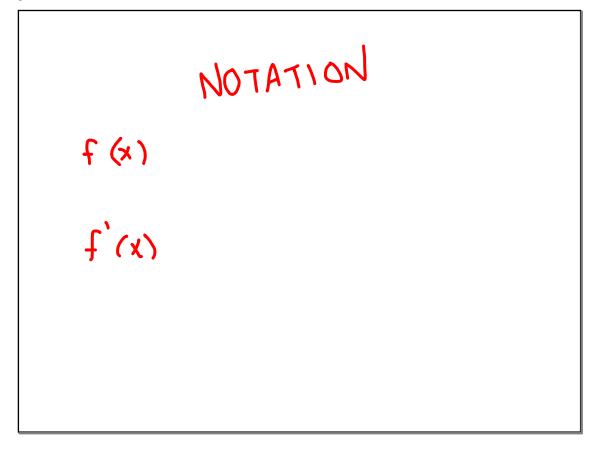
b) Find S(12) and interpret its meaning =4526g is the weight of the sand after 12 seconds 0) Find S'(12) and interpret its meaning, Can Use GDC directly 12 seconds into the trial C'(R) = 247.6Sand is being poured at a rate of 247.6 g/sec











Calculator skills: On typical or non-typical functions....
 use GDC to:

- Caclulate the gradient at a given location
- **Calculate the equation of a tangent line at a given location**

 $f(x) = -x^{2} + 2^{*} - \sqrt{x}$ a) f'(7) =

