The Ch. 4 Test will be
Monday, Oct $29^{\text {th }}$.
[because of that the Proposal for Response Bias Project can be turned on Tuesday Oct. 30]

A strategy to help account for variability in the response that is introduced by an uncontrolled variable

Randomized Block Designs

1. Outline (meaning a diagram) a completely randomized design to compare the two treatments.
2. Outline (meaning a diagram) a completely randomized design to compare the two treatments.
3. Outline (meaning a diagram) a completely randomized design to compare the two treatments.

4. The counselors at SHS hypothesize that the online vs. classroom results could be greatly affected by the grade level of students that were put into each treatment group. They know that seniors generally score better on the SAT than juniors. How could we adjust our experiment to ensure that there is even split of seniors and juniors in each class? Draw an outline of the experiment with your modifications.
5. The counselors at SHS hypothesize that the online vs. classroom results could be greatly affected by the grade level of students that were put into each treatment group. They know that seniors generally score better on the SAT than juniors. How could we adjust our experiment to ensure that there is even split of seniors and juniors in each class? Draw an outline of the experiment with your modifications.

6. The counselors are now worried that a student's GPA is certainly going to affect their SAT score. Let's look only at the Juniors. We want to be sure that the different GPAs are being evenly distributed into the two treatment groups.

How could we be sure the GPAs are evenly distributed?
3. The counselors are now worried that a student's GPA is certainly going to affect their SAT score. Let's look only at the Juniors. We want to be sure that the different GPAs are being evenly distributed into the two treatment groups.

How could we be sure the GPAs are evenly distributed? m Order all students by GPA from least to greatest. Take 2 students ω /highest GPA and pair them. \& Flip a coin to assign ore to online class, one to classroom\& Repeat this process with the next two juniors, repeat until all 30 junior have been assigned

A block is a group of experimental units that are known before the experiment to be similar in some way that is expected to affect the response to the treatments.
In a randomized block design, the random assignment of experimental units to treatments is carried out separately within each block.

Using a randomized block design allows us to account for the variation in the response that is due to the blocking variable. This makes it easier to determine if one treatment is really more effective than the other.

When blocks are formed wisely, it is easier to find convincing evidence that one treatment is more effective than another.

1. Outline (meaning a diagram) a completely randomized design to compare the two treatments.

Randomized Block Designs - The Big Ideas

BLOCK - group of
experimental units that are known to be similar.

Randomized Block Designs - The Big Ideas

BLOCK - group of experimental units that are known to be similar.

Randomized BLOCK DESIGN:

- Separate subjects to blocks and then randomly assign to treatments with in each block

3. The counselors are now worried that a student's GPA is certainly going to affect their SAT score. Let's look only at the Juniors. We want to be sure that the different GPAs are being evenly distributed into the two treatment groups.

How cojyld we be sure the GPA are evenly distributed?
Q U Order all students by GPA from least to greater Take 2 students w/ highest GPA and pair then. ar Flip a coin to assign one to online class, one to chase

As Repeat this process with the next two juniors, repeat un all 30 juniors have been assigned.

Randomized Block Designs - The Big Ideas

BLOCK - group of experimental units that are known to be similar.

Randomized BLOCK DESIGN:

- Separate subjects to blocks and then randomly assign to treatments. with in each block.

दMATCHED PAIRS - An experiment used to compare two treatments that $\overline{\text { uses }}$ blocks of size 2 .

Randomized Block Designs - The Big Ideas
BLOCK - group of 3 MATCHED PAIRS - An experiment experimental units that are known to be similar.
used to compare two treatments that uses blocks of size 2 .
Randomized BLOCK DESIGN:

- Separate subjects to blocks and then randomly assign to treatments. with in each block.

Two very similar experimental units are paired and then randomly assigned to a treatment.

What is the benefit of blocking?

Blocking accounts for a source of \qquad , just like stratifying. This means that blocking is a good way to increase your chances of finding \qquad -.

In general, how can we determine which variables might be best for blocking?

Use the variables that are most \qquad with (that can best predict) the response variable. The units \qquad should respond similarly, but differently than the units in other blocks.

What is the benefit of blocking?

Blocking accounts for a source of Variability, , just like stratifying. This means that blocking is a good way to increase your chances of finding convincing evidence.

In general, how can we determine which variables might be best for blocking?
Use the variables that are most strongly asSOciated with (that can best predict) the response variable. The units with in the block should respond similarly, but differently than the units in other blocks.

What are some variables that we can block for in the caffeine experiment?

Anything that would create variability in the response.
(e.g. \qquad , \qquad , \qquad)

What is the difference between blocking and stratifying?

Blocking is to experiments as \qquad is to \qquad

What are some variables that we can block for in the caffeine experiment?

Anything that would create variability in the response.

What is the difference between blocking and stratifying?

7. Possibilities for Matched Pairs

$$
\begin{aligned}
& \text { ~ } 2 \text { similar people } \\
& \text { ~ same person, different parts of body (right arm/left } \\
& \text { arm } \\
& \text { ~ same person, different day }
\end{aligned}
$$

Could we use matched pairs for the caffeine experiment?

$$
\begin{aligned}
& \text { arrange ages } \rightarrow \text { pairs } \\
& \text { arrang weights } \rightarrow \text { pairs }
\end{aligned}
$$

8. Clockwise or counterclockwise? Matched pairs design

A track coach wants to know whether his long-distance runners are faster running the track clockwise or counterclockwise. Design an experiment that uses a matched pairs design to investigate this question. Explain your method of pairing.
8. Clockwise or counterclockwise? Matched pairs design

A track coach wants to know whether his long-distance runners are faster running the track clockwise or counterclockwise. Design an experiment that uses a matched pairs design to investigate this question. Explain your method of pairing.

A model answer is located on the bottom of the last sheet.

Check Your Understanding:

Researchers would like to design an experiment to compare the effectiveness of three different advertisements for a new television series featuring the work of Jane Austen. There are 300 volunteers available for the experiment.

1. Describe a completely randomized design to compare the effectiveness of the three advertisements.

Check Your Understanding:

Researchers would like to design an experiment to compare the effectiveness of three different advertisements for a new television series featuring the work of Jane Austen. There are 300 volunteers available for the experiment.

1. Describe la completely randomized design to compare the effectiveness of the three advertisements.

2. Describe a randomized block design for this experiment. Justify your choice of blocks.

3. Why might a randomized block design be preferable in this context?

It minimizes the variability caused by those who have or havern't any familiarity with Austen. The ads may wave different effectiveness based an
4.2 $71,75,77,79,83-90$

