

Schedule
Th NORMAL'S + OPTMIZATICN
Fri Review
Mon Quiz on calculus \checkmark

Using the derivative:

1. Find the equation of a NORMAL
2. Optimize a situation.

Then, do the first problem on the Notes 4.0

 handout(1)
Find the equation of the Tangent and the Normal for the equation $y=x^{3}-5 x+2$ at the location $x=-2$

$$
\begin{aligned}
f(-2) & =(-2)^{3}-5(-2)+2 \\
& =4 \\
& (-2,4)
\end{aligned}
$$

$$
f^{\prime}(x)=3 x^{2}-5
$$

$$
f^{\prime}(-2)=3(-2)^{2}-5=7
$$

$$
\operatorname{poslop}^{\text {int }} y-4=7(x+2) y^{1+219}
$$

slope of tangent slope of Normal $-\frac{1}{7}$ Nomad $\begin{array}{r}y-4=-\frac{1}{7}(x+2) \\ y=\frac{1}{7} \times \frac{26}{7}\end{array}$
(1) Find the equation of the Tangent and the Normal for the equation $\mathbf{y}=\mathbf{x}^{3}-\mathbf{5 x}+2$ at the location $\mathrm{x}=-2$

POT. $f(-2)$
$f(-2)=(-2)^{2}-5(-2)+2$ $=4$ $(-2,4)$

GRaDient $f^{\prime}(x)=$ $f^{\prime}(-2)=$
equation of Tangent
equation of Normal
(2) Find the equation of the Tangent and the Normal for the equation

$$
\begin{aligned}
& y=\frac{1}{x}+2 \quad \text { at the location }(-1,1) \\
& y=x^{-1}+2 \\
& f^{\prime}(x)=-x^{-2}=-\frac{1}{x^{2}} \\
& f^{\prime}(-1)=-\frac{1}{(-1)^{2}}=-1 \\
& \text { tangent }-1-\frac{1}{1} \frac{\text { Tangent }}{y-1=-(x+1)} \\
& \text { Normal } 1
\end{aligned}
$$

any point on a curve where the tangent line is
horizontal is a STATIONARY point

local minimums
maximums

local minimums

Horizontal tangents have a gradient of zero

To find all of those places on any given function:
(1) find thegradient function and
(2) set it equal to zero

(3) Solve to find x-values (if any) which are the locations where the tangents have a gradient of zero!

(3) Find the equations? of any horizontal tangents of

$$
\begin{aligned}
& f(x)=\frac{1}{3} x^{3}-x+2 \\
& f^{\prime}(x)=x^{2}-1
\end{aligned}
$$

(4)

Find the stationary points of the curve $y=x^{3}-3 x^{2}-9 x+10$
a) $f^{\prime}(x)=3 x^{2}-6 x-9$
b)

$$
\begin{aligned}
& 3 x^{2}-6 x-9=0 \\
& 3\left(x^{2}-2 x-3\right)=0 \\
& x^{2}-2 x-3=0 \\
& (x-3)(x+1)=0 \\
& x-3=0 x+1=0
\end{aligned}
$$

"the Box Problem"

(5)

Square corners are cut from a piece of 12 cm by 12 cm tinplate which is then bent into the form of an open dish. What size squares should be removed if the volume is to be a maximum?

Note: $0 \leqslant x \leqslant 6$

$$
\begin{aligned}
& \begin{aligned}
\mathbf{V}(\mathbf{x}) & =(12-2 x)^{2} \times x \\
& =\left(144-48 x+4 x^{2}\right) \times x \\
& =144 x-48 x^{2}+4 x^{3} \\
\mathbf{V}(\mathbf{x}) & =4 x^{3}-48 x^{2}+144 x
\end{aligned} \\
& \text { We can graph to let our GDC find the } \\
& \text { maximum volume }
\end{aligned}
$$

or we can use calculus !

The max volume will occur where the gradient is zero. Therefore, we need to find the derivative and set it to 0

$$
\begin{aligned}
\therefore \quad V^{\prime}(x)= & 144-96 x+12 x^{2} \\
0= & 12\left(x^{2}-8 x+12\right) \\
0= & 12(x-2)(x-6) \\
& x-2=0 \quad x-6=0 \\
& x=2 \quad x=6
\end{aligned}
$$

\therefore maximum volume occurs when $x=2 \mathrm{~cm}$
\therefore cut out 2 cm squares.

Create a cylindrical package that can hold a $1 / 2$ liter but wait..... there are two variables? What's the best radius?

Optimization skip to the last side.

to the of the
sheet

What if you wanted the minimum material to make a cylinder with a required volume?

In this case you would have two variables (radius and height) and one fixed quantity (volume)

Think about Why is having two variables a problem?

In order to differentiate, you need an expression for the quantity you want to minimise (or maximise) in terms of just one variable

Working with a cylinder

First, use the fixed volume to eliminate one of the variables (either the height or radius)

When you have an expression for the quantity of material needed to make the cylinder in terms of just one variable, differentiate it and put the derivative $=0$

Solve this equation to find the value of the variable that gives a minimum (or maximum)

Then find the value of the other variable and the minimum (or maximum) that you require

Minimum material to make a can
Say you want to find the minimum metal needed to make a can to hold 500 ml (the same as $500 \mathrm{~cm}^{3}$)

$$
500=\pi r^{2} h_{1} . h=\frac{500}{\pi r^{2}}
$$

$\begin{aligned} & \text { SA metal } \\ & \text { of }\end{aligned} M=2 \pi r^{2}+2 \pi r h$

$$
M=2 \pi r^{2}+2 \pi r h \quad 500=\pi r^{2} h
$$

$$
\begin{aligned}
& M=2 \pi r^{2}+2 \pi r h_{F \ldots} \quad 500=\pi r^{2} h \\
& M=2 \pi r^{2}+2\left(\frac{500}{\pi r r^{2}}\right)^{\circ} \cdot \cdot h=\frac{500}{\pi r^{2}} \\
& M=2 \pi r^{2}+\frac{1000}{r} \\
& 1000 r^{-1} \\
& \frac{d M}{d r}=4 \pi r-\frac{1000}{r^{2}} \\
& -1000 r^{-2} \\
& 4 \pi r^{3}-1000=0 \\
& 4 \pi r-\frac{1000}{r^{2}}=0 \\
& \text { multiply by } r^{2} \\
& \text { to clear out } \\
& \text { the fractions! } \\
& \begin{array}{l}
r=4.30 \mathrm{~cm} \text { would } \\
\text { minimize the surf, area }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
4^{2}(4 \pi r) & -{ }^{2}\left(\frac{1000}{r^{2}}\right)=(0) r^{2} \\
4 \pi r^{3}-1000 & =0 \\
4 \pi r^{3} & =1000 \\
r^{3} & =\frac{1000}{4 \pi} \quad r=\sqrt[3]{\frac{1000}{4 \pi}}
\end{aligned}
$$

Assignment
(1) Day 4 Worksheet (both sides)
(2)Calculus packet: and p. 582...Review Set A..... 1-8

