

Questions on HW ?

## EXERCISE 20A. 2

1 For the travel graph given alongside, estimate the average speed:
a in the first 4 seconds
b in the last 4 seconds



## EXERCISE 20A. 2

1
a $0.1 \mathrm{~m} \mathrm{~s}^{-1}$
b $0.9 \mathrm{~m} \mathrm{~s}^{-1}$
c $0.5 \mathrm{~m} \mathrm{~s}^{-1}$
$f(x)=\frac{\partial x}{x^{2}}-\frac{3}{x^{2}}$



## Review Question:

If $f(x)=x^{3}-2 x \quad$ find $f(-2)$ and $f^{\prime}(-2)$ and interpret each.

Check on calculator

$$
f(-2)=(-2)^{3}-2(-2)=-4
$$


point on graph
gradient function $f^{\prime}(x)=3 x^{2}-2$
gradient at $\mathrm{x}=2 \mathrm{f}^{\prime}(-2)=3(-2)^{2}-2=10$

$$
\begin{aligned}
& f(-2)=(-2)^{3}-2(-2)=-4 \quad \therefore\left(\begin{array}{l}
(2, \\
\text { tang }
\end{array}\right. \\
& \begin{array}{l}
\text { gradient function f } f^{\prime}(x)=3 x^{2}-2 \\
\text { gradient at } x=2
\end{array} f^{\prime}(-2)=3(-2)^{2}-2=10
\end{aligned}
$$

Interpretation： 10 is the slope（gradient）of the tangent at the point oftangency $(-2,4)$
or
10 is the instantaneous rate of change at at $x=-2$

$$
\begin{aligned}
& \text { Flt: Flow: lots } \\
& \text { ソ1日 } \\
& \because \because 2=
\end{aligned}
$$



## Calculus Day 3 Objectives

1. Find points on curves that have specific gradients.
2. Find the equation of a tangent line at a specific points on a graph.

Need Notes 3.0



Example A
At what point on the graph of $y=3 x^{2}-2 x+6$ does the tangent have a gradient of 10

$$
\begin{aligned}
& \underbrace{\substack{\frac{d x}{0 x}=10 \\
x}}_{\substack{(0) \\
f^{\prime}(x)=10}} \\
& f^{\prime}(x)=6 x-2 \\
& \text { set } 6 x-2=10 \\
& 6 x=12 \\
& x=2 \\
& f(2)=3(2)^{2}-\frac{2(2)}{6}
\end{aligned}
$$

## Example 1

Find the equation of the tangent (line) to $f(x)=2 x^{2}-3 x$ at $x=2$


3rd-Find the gradient of the

$$
\begin{gathered}
\text { tangent at } x=2 \\
f^{\prime}(x)=4 x-3 \\
f^{\prime}(2)=4(2)-3 \\
=5
\end{gathered}
$$

2nd - Find the point of tangency on the original curve


4th-Using your point \& slope, write the equation
point/slope


## Example 2

Find the equation of the tangent to $f(x)=5 x^{-1}+x$ at $x=1$
$K \Vdash$
Gradient at point of tangency

$$
\begin{aligned}
& f^{\prime}(x)=(5)\left(-1 x^{-2}\right)+1 \\
& f^{\prime}(1)=-\frac{5}{(1)^{2}}+1=-4
\end{aligned}
$$

$$
=\frac{5}{x}+x
$$

Point of tangency


$$
\begin{aligned}
& \text { Equation } \\
& y-6=-4(x-1)
\end{aligned}
$$

$$
\begin{gathered}
y-6=-4 x+4 \\
y=-4 x+10
\end{gathered}
$$

Your calculator can "draw" tangent anywhere you wish.
At the same time, the equation will be given.
which is a great way to check your answer.

Example 3
Find the equation of the tangent to $f(x)=2 x^{3}-4 x+1$ at $x=-\frac{1}{2}$ and find the point at which this tangent meets the curve again.


The other pone is $(1,-1)$

$$
\begin{aligned}
f^{\prime}(x) & =6 x^{2}-4 \\
f^{\prime}\left(-\frac{1}{2}\right) & =6\left(-\frac{1}{2}\right)^{2}-4 \\
& =-2.5
\end{aligned}
$$

$$
\begin{aligned}
& =-2.5 \\
y-2.75 & =-2.5\left(x-\frac{1}{2}\right) \\
& =-2.5 x-1.25
\end{aligned}
$$

$$
\begin{gathered}
y-2.75=-2.5 x-1.25 \\
+2.75
\end{gathered}
$$

$$
+2.75=-2.5 x+1.50
$$

Brain Break

Take an LCQ while I pass your lost Test back (youill need a ruler of)
some kind

## Assignment

## Calculus Packet:

page. 574.... 5
page 575.... 10, 12, 14
page 578..... 1de, 2b

