Questions
on HW??

Data Tables via Spreadsheets

1. Enter raw data into a spreadsheet.

2 Adjust the headers to minimize width

- Wrap text if necessary.
- Adjust width so you can see text and numbers

3. Copy all columns and paste into a new section called Data Table that you create.
4. Decide on a reasonable font size (not too small).
5. Insert copies of your header appropriately so that when you paste your data into your main project document (Googhtepor) the heater will be at the top.
6. Consider splitting the page if you have ≥ 4 pages data

Questions on the Homework?

Check HW Assignment 4

$$
\begin{aligned}
& \text { p.80...." } 9 \\
& \text { factory } 56 \text { workers, } 47 \text { day tint, } 29 \text { night shift } \\
& 0
\end{aligned}
$$

EXERCISE 14C p.461.... 1
1 The table shows data from a survey conducted at five schools on the rate of smoking amongst 15 year old students.
a What is the probability that a randomly chosen female 15 year old student at school \mathbf{C} is a smoker?
b What is the probability

School	No. of 15 year olds		No. of smokers	
	Male	Female	Male	Female
	45	51	10	11
B	36	42	9	6
C	52	49	13	13
D	28	33	9	10
E	40	39	7	4
Total	201	214	48	44

c If a 15 year old is chosen at random from the five schools, what is the probability that he or she is a smoker?

p.456.... 3

3 Betul keeps records of the number of phone calls she receives over a period of consecutive days.
a For how many days did the survey last?
b Estimate Betul's chance of receiving:
i no phone calls on one day
ii 5 or more phone calls on a day
iii less than 3 phone calls on a day.

.465

4 A dart board has 36 sectors, labelled 1 to 36 . Determine the probability that a dart thrown at the board hits:
a a multiple of 4
b a number between 6 and 9 inclusive
c a number greater than 20
d 9
e a multiple of 13
f an odd number that is a multiple of 3 .

6 List the six different orders in which Antti, Kai and Neda may sit in a row. If the three of them sit randomly in a row, determine the probability that:
a Antti sits in the middle
c Antti sits at the right end
b Antti sits at the left end
d Kai and Neda are seated together

p.80	56
9	people factory 47 day
29	night

$$
\begin{aligned}
& 0=0+0-0 \\
& 56=47+29-0
\end{aligned}
$$

$\frac{p .465}{6}$ AKN ANK KAN KNA NAK NKA
\# 6
a) $\frac{2}{6}$

2 The given table shows complaints received by the Telecommunications Ombudsman concerning internet services over a four year period.

Reason	$1998 / 99$	$1999 / 00$	$2000 / 01$	$2001 / 02$
Access	585	1127	2545	-
Billing	1822	2102	3136	3582
Contracts	242	440	719	836
Credit control	3	44	118	136
Customer Service	12	282	1181	1940
Disconnection	n/a	nsa	n/a	248
Faults	86	79	0	2384
Privacy	93	86	57	60
Provision	172	122	209	311
Total	3015	4282	7965	9497

a What is the probability that a complaint received in $2000 / 01$ is about customer service?

$$
\frac{1181}{79,165}=0.148
$$

b What is the probability that a complaint received at any time during the 4 year period related to billing?

$$
\frac{18}{3015+4282+7965+9497}=0.450
$$

c What is the probability that a complaint received in 2001/02 did not relate to either billing or faults?

$$
\frac{836+136+1940+248+100+311}{9497}=0.372
$$

Quiz this Friday (Nov. 2)

Sets/VennDiag/Probability along with a teveroboms on Geometry/Trig?

Being able to "show" the sample space is important when things get more complicated.

In some cases you can just list the sample space. In others it is more efficient and "friendly" using other tools.....
such as
Grids and Tree Diagrams

TOSS ${ }^{3}$ COINS
at a time
What is the probability of getting exactly 2 tails?

Strategy: \square Lob all of the outcomes

HAH H HT TH TIT
ht Th
TH HTS
being systematic can be helpful

If you have 4 books with Authors Ben, Tammy, Chip, and Tanya

If you line the books up randomly on a shelf, what is the probability the female authors will be adjacent?

Goal:
Calculate simple Probability

Calculate Compound Probability

Pick up a handout
(A)

Two-Dimensional Grids
handout

Illustrate on a 2 -dimensional grid the sample space for: rolling a die and tossing a coin simultaneously

Possible Question
What is the probability of flipping a head and rolling an even number?

$\frac{3}{12}$

What is the probability of flipping a tail or rolling a prime number ? $\frac{9}{12}$

Complementary Events

$$
\begin{aligned}
& p(\text { rains })=1-p(\text { does not rain }) \\
& p\binom{\text { it does }}{\text { not snow }}=1-p(\text { it snows })
\end{aligned}
$$

$$
P(E)=1-P\left(E^{\prime}\right)
$$

AND FINALLY, A SUBTRACTION RULE: FOR ANY EVENT E,

THIS IS USEFUL WHEN PINOT E) IS EASIER TO COMPUTE THAN PE). FOR INSTANCE, LET E BE THE EVENT, A DOUBLE-1 IS NOT THROWN. THE EVENT NOT-E, A DOUBLE-1 IS THROWN, HAS PROBABILITY P(NOT E) $=\frac{1}{36}$.

So

$$
\begin{aligned}
P(E) & =1-P(N O T E) \\
& =1-\frac{1}{36} \\
& =\frac{35}{36}
\end{aligned}
$$

Weill look at Tree Diagrams and probability the next class.... but for now we will look at.....

Compound Probability
or $\quad A$ or B
and
and B
can gate
complicated

INDEPENDENCE and the special multiplication rule．
 TWO EVENTS E AND F ARE INDEPENDENT OF EACH OTHER IF THE OCCURRENCE OF ONE HAS NO INFLUENCE ON THE PROBABILITY OF THE OTHER．FOR INSTANCE，THE ROLL OF ONE DIE HAS NO EFFECT ON THE ROLL OF ANOTHER（UNLESS THEY＇RE GLUED TOGETHER，MAGNETIC，ETC．！）．

のかが．
copper．

INDEPENDENT EVENTS

Independent events are events where the occurrence of one of the events does not affect the occurrence of the other event．

If A and B are independent events then $P(A$ and $B)=P(A) \times P(B)$ ．

If A, B and C are all independent events，then $\mathrm{P}(\mathrm{A}$ and B and C$)=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B}) \times \mathrm{P}(\mathrm{C})$ ．

A coin and a die are tossed simultaneously. Determine the probability of getting a head and a 3 without using a grid

$$
\begin{aligned}
& P(\text { head })=\frac{1}{2} \\
& P(3)=\frac{1}{6}
\end{aligned}
$$

$$
P(A \text { and } B)
$$

$$
\begin{aligned}
& P(A \text { and } B) \\
& P(\text { head and } 3)=\frac{1}{2} \cdot \frac{1}{6}=\frac{1}{12}
\end{aligned}
$$

Rain Example

At a mountain village in New Guinea it rains on average 6 days a week. Determine the probability that it rains on:
a any one day $P\left(\begin{array}{c}\text { rains } \\ \text { on } \\ \text { a day }\end{array}\right)=\stackrel{6}{7}$
b two successive days $P\left(\begin{array}{l}\text { rains } \\ \text { today }\end{array} \operatorname{and} \underset{\text { tomorrow }}{\operatorname{rains}}\right)=\frac{6}{7} \cdot \frac{6}{7}=\frac{36}{49}$.
c three successive days. $P\left(\begin{array}{c}\left.\text { rains and } \begin{array}{c}\text { Rains } \\ \text { Day } \\ \text { Pay }\end{array} \text { and } \begin{array}{c}\text { rains } \\ \text { Day } 3\end{array}\right)\end{array}\right.$

$$
-\frac{6}{7} \cdot \frac{6}{7} \cdot \frac{6}{7}=\frac{216}{343}
$$

G Target Example

Two marksmen fire at a target simultaneously. Jiri hits the target 70% of the time and Benita hits it 80% of the time. Determine the probability that:
a they both hit the target

$$
\begin{aligned}
& \text { they both hit the target } \\
& P\left(\begin{array}{c}
\text { J ri and Benita } \\
\text { hits and } \\
\text { hits }
\end{array}\right)=(.8)(.7)=.56 \text { or } 56 \text {. }
\end{aligned}
$$

b they both miss the target

$$
\begin{aligned}
& \text { dey both miss the target } \\
& P\left(\begin{array}{l}
\text { Jinni } \\
\text { misses and ad and } \\
\text { Bises } \\
\text { miss }
\end{array}\right)=(.3)(.2)=.06 \text { or } 6^{-1}
\end{aligned}
$$

c Jeri hits it but Benita misses

$$
\begin{aligned}
& \text { i hits it but Benita misses } \\
& =(7)(.2)=.14 \text { or } 14^{\%} \text {. } 14 .
\end{aligned}
$$

d Benita hits it but Jeri misses.

$$
\begin{aligned}
& \text { Benita hits it but Jiri misses. } \\
& P\left(\begin{array}{c}
\text { Bent ia } \\
\text { hits }
\end{array} \text { and Mimisss }\right)=(.8)(.3)=24
\end{aligned}
$$

工
 CONDITIONAL PROBABILITY Situation:

Suppose you are dealt two cards. What is the probability that both are Spades?

$$
P\left(\frac{1 \text { st }}{\text { spade }} \text { and } \stackrel{2^{\text {nd }}}{s p a d e}\right)=\frac{13}{52} \cdot \frac{12}{51}
$$

CONDITIONAL PROBABILITY:

Event \#2 is affected by Event \#1

The chance of getting 1 Spade is 13/52 since:
There are 13 total spades and 52 total cards

IMPORTANT: Probability has changed!! After getting Spade \#1, there are only 12 Spades left and there are only 51 cards left.
Probability of the second spade $12 / 51$

CONDITIONAL PROBABILITY :
Multiplication
Probability (Spade \#1) times Probability (Spade 2)

$$
\frac{13}{52} \cdot \frac{12}{51}=.0588
$$

(H)

DEPENDENT EVENTS
Two or more events are dependent if they are not independent. Dependent events are events where the occurrence of one of the events does affect the occurrence of the other event.

If A and B are dependent events then

$$
P(A, \text { then } B)=P(A \text { given that } A \text { has occurred })
$$

Assignment \#5 due tomorrow,

$$
\begin{aligned}
& \text { p. } 466 \ldots 9 \\
& \text { p. } 468 \ldots 1,3 \text { cefg } \\
& \text { p. } 471 \ldots 2-3 \\
& \text { p. } 473 \ldots 1
\end{aligned}
$$

