- Pick up the new HW recording sheet for this week.

You'll need some type of a ruler or straight edge

(a student body card or ATM type card will do)

Calculus

Sequences \& Series \& Financial Math Logic

Sets, Venn Diagrams, and Probability

Today we will start a short, 6 day, unit on Calculus.

All Assignments will be from the Differential Calculus packet, Ch. 20

There will be a Quiz on this unit on Monday, Oct. 22

$$
\begin{aligned}
& \text { and and one or two LCQ's this week } \\
& \text { to check on your learning. }
\end{aligned}
$$

from now on, the words
 "slope" and "gradient" are interchangeable.

Last week:
Calculus Precursor assignment

From now on, the word "slope" and "gradient" mean the same thing $\quad m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

1. Find the equation of the straight line joining each of the following points. Use Point-Slope form (we'll need it for calculus) $y-y_{1}=m\left(x-x_{1}\right)$ hint: first find m
(a) $(-2,-4)$ and $(1,-7)$
(b) Then convert to gradient-intercept form $(y=m x+b)$ a.k.a. slope-intercept form
2. Find the equation of the straight lines below, given its gradient and the coordinates of a point on the straight line. Point-slope form
$-\frac{1}{2}, \quad(5,7)$
3. New tires have a tread depth of 8 mm . After driving for $32,178 \mathrm{~km}$ the tread depth was reduced to 2.3 mm . What was the wearing rate of the tires in km travelled per mm of depth.
(The value you calculated can also be called the average wear rate)
4. Before answering this question, first go to question \#4 on the back side. Then come back. Estimate the average speed in graph between 2 and $\mathbf{7}$ seconds and average rate of beetle decrease from dose 4 to 14

Consider a trip from Adelaide to Melbourne. The following table gives places along the way, distances travelled and time taken.

We plot the distance travelled against the time taken to obtain a graph of the situation. Even though there would be variable speed between each place we will join points with straight line segments.

Place	taken (min)	travelled (km)
Adelaide tollgate	0	0
Tailem Bend	63	98
Bordertown	157	237
Nhill	204	324
Horsham	261	431
Ararat	317	527
Midland H/W Junction	386	616
Melbourne	534	729

We can find the average speed between any two places.
For example, the average speed from Bordertown to Nhill is:

$$
\begin{aligned}
& \frac{\text { distance travelled }}{\text { time taken }} \\
= & \frac{324-237 \mathrm{~km}}{204-157 \mathrm{~min}} \\
= & \frac{87 \mathrm{~km}}{\frac{47}{60} \mathrm{~h}} \\
\doteqdot & 111 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

We notice that the average speed is the $\frac{y \text {-step }}{x \text {-step }}$ on the graph.
So, the average speed is the gradient of the line segment joining the two points which means that the faster the trip between two places, the greater the gradient of the graph.
If $s(t)$ is the distance travelled function then the average speed over the time interval from $t=t_{1}$ to $t=t_{2}$ is given by:

$$
\text { Average speed }=\frac{s\left(t_{2}\right)-s\left(t_{1}\right)}{t_{2}-t_{1}}
$$

Place		$\begin{aligned} & \text { Taken } \\ & (\min) \end{aligned}$	Travellear (kan)	
4delaide tollgate		0	0	
Tailem Bend		63	98	
Bordertown		157	237	
Nhill	t	, 204	324	$s\left(t_{1}\right)$
Horsham		261	431	
Ararat		317	527	
land H / W Junction		386	616	
Melbourne		2^{534}	729	$S\left(t_{2}\right)$

Calculate the average speed between Nhill and Melbourne. Then go back and answer question \#4.

Pick up:

Calculus 1.0 Notes

The Graph below shows how a cyclist accelerates away from an intersection.

The average speed over the first 8 seconds is

$$
\frac{100 \mathrm{~m}}{8 \mathrm{sec}}=12.5 \mathrm{~ms}^{-1} . \quad 125 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Notice that the cyclist's early speed is quite small, but it increases as time goes by.

Estimate the average speed of the cyclist between 3 and 7 seconds
Aug Speed $=\frac{58-9}{7-3}$ $=\frac{49}{4} \approx$
12.25

Estimate the average speed of the cyclist between 3 and 7 seconds
Arg speed $=\frac{60-10}{7-3}=\frac{50}{4}=12.5 \mathrm{~m} / \mathrm{sec}$ LUNIT

From Geometry: A tangent is a line (or segment) that touches a circle at exactly one point.

Instantaneous Rates of Change

But that does not tell us the instantaneous speed at any particular time

https://www.geogebra.org/m/sCsZxYjs

The instantaneous rate of change of a variable at a particular instant is given by the gradient of the tangent line to the graph at that point.

Now back to the

Cyclist problem

\bullet

Find the instaneous speed at

$$
\begin{aligned}
& t=4 \\
& \text { seconds }
\end{aligned}
$$

This instantaneous rate of change at

 specific point on a curve can be calculateda) visually, by estimating the gradient (slope) of the line that is tangent at that point
b) Using the algebraic method (Algebraic Method)
c) Finding the derivative (tomorrow)
d) with your GDC

K. Basic Differential Calculus

Calculate the derivative at a specific point.

1. Graph the function, $f(x)$, and obtain an appropriate window.
2. Select 2 nd then TRACE, the select $\frac{d y}{d x}$,
3. enter the appropriate x-value, then ENTER

Draw Tangent Line (\& calculate it's equation)

1. Graph the function, $f(x)$, and obtain an appropriate window.
2. Select Ind then DRAW, then TANGENT,
3. enter the appropriate x-value, then ENTER

Find the instaneous rate of change at $t=3$ hours

$$
\begin{aligned}
& f(x)=0.5(2)^{x} \\
& \checkmark \text { Graph (zoom 6) } \\
& \checkmark \text { end Call }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{t}=3 \text { seconds } \\
& \frac{d y}{d x}=2.77 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

$$
y=2 \sin (x)
$$

$$
\frac{d y}{d x} \text { at } x=30
$$

Assignment:
Ch 20 Calculus packet: p. 565..... 1, 2 p. 568..... 1abe, $3-$

