
rowers was ty ing to some me quadratic equation
$x^{2}+2.5 x-1.5=0$. "I think I need to use the Quadratic Formula

- because of the decimals," she told Walter. Walter replied, " I'm sure there's another way! Can't we rewrite this equation so there aren't any decimals?"

What is Walter talking about? Rewrite the equation so that it has no decimals. You don't need to solve it !

$$
x^{2}+2.5 x-15=0
$$

$$
10 x^{2}+25 x-15=0 \quad 2 x^{2}+5 x-3=0
$$

2. Re-write the following three equations (or system), but do $\mathbf{n O t}$ solve them.

$$
\begin{array}{ll}
\text { a. } \frac{100 x^{2}}{\frac{100}{100}}+\frac{100 x}{100}=\frac{2000}{104} & \\
x^{2}+x=20 & O=-x^{2}-x+20 \\
x^{2}+x-20=0 & a=-1 \\
a=1 & b=-1 \\
b=1 & c=20 \\
c=-20 &
\end{array}
$$

b. $15 x+10 y=-20 \rightarrow 15 x+10 y=-20$ $7 x-2 y=24 \underset{x 5}{\longrightarrow}+35 x-10 y=120$
b. $15 x+10 y=-20 \stackrel{\div 5}{\rightarrow} \quad 3 x+2 y=-4$ $7 x-2 y=24 \rightarrow+7 x-2 y=24$

$$
\begin{aligned}
& \text { c. } \frac{1}{3} x^{2}+\frac{x}{2}-\frac{1}{3}=0 \\
& 2(x) \frac{1}{3} x^{2}+\frac{x}{2}-\frac{1}{3}=0 \\
& 2 x^{2}+3 x-2=0 \\
& { }^{6}()^{6}()^{6}()^{6}()
\end{aligned}
$$

You do not need to actually solve the equations). $\quad=m^{2}+5 m-24$
a. $\left(\underline{m}^{2}+5 m-24\right)^{2}-\left(m^{2}+5 m-24\right)=6$

$$
\begin{aligned}
& U^{2}-U=6 \\
& U^{2}-U-6=0 \quad \begin{array}{ll}
x^{2}-x-6=0 \\
(x+2)(x, 3)=0
\end{array} \\
& v=3^{5} \quad v=-2 \\
& m^{2}+5 m-24=3 \quad m^{2}+5 m-24=-2
\end{aligned}
$$

$$
\begin{aligned}
\left(4 x^{2}+4 x-3\right)^{2} & =\left(x^{2}-5 x-6\right)^{2} \\
W^{2} & =U^{2}
\end{aligned}
$$

a)	$5 x-2 y=8$
$-5 x$	b) $\frac{x y}{x}+\frac{3 x}{x}=\frac{2}{x}$
$x y=2-3 x$	$y+3=\frac{2}{x}$
$y=\frac{2-3 x}{x}$	$y=\frac{2}{x}-3$

h

\square
(32)
$\left(x^{3} y^{-2}\right)^{-4}$
(b)
$\left(x^{3}\right)^{-4}\left(y^{-2}\right)^{-4}$

$$
x^{-12} \cdot y^{8}
$$

$$
\begin{aligned}
& -3 x^{2}\left(6 x y-2 x^{3} y^{2} z\right) \\
& -3 x^{2} \cdot 6 x y+3 x^{2} \cdot 2 x^{3} y^{2} z \\
& -18 x^{3} y+6 x^{5} y^{2} z
\end{aligned}
$$

$$
=\frac{y^{8}}{x^{12}}
$$

35 (a) circle $\begin{aligned} & \text { radius } 12 \\ & \text { center }(-2, B) \quad x^{2}+y^{2}=r^{8}\end{aligned}$
(b) center $(-1,-4)$ radius 1

The strategy used in the warm up can be described as:

Solving by re-writing

Solving by re-writing

Example 1

$$
\frac{(x-3)(x-1 x}{x}+\frac{2 x(x-1)}{(x-1)}=\frac{(5-x)}{x}(x-1) x
$$

multiply bx $(x-1)$

$$
\begin{aligned}
& (x-3)(x-1)+2 x=(5-x)(x-1) \\
& x^{2}-x-3 x+3+2 x=5 x-5-x^{2}+x \\
& =-x^{2}+6 x-5 \\
& +x^{2}-2 x+3=6 x+5=0 \\
& +x^{2}-6 x+5 \\
& 2 x^{2}-8 x+8=0 \\
& x^{2}-4 x+4=0
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}-4 x+4=0 \\
& (x-2)(x-2)=0 \\
& x-2=0 \\
& x=2
\end{aligned}
$$

Especially with equations that have Variables in the denominator,
check your answers.

Example 2 - Rewrite to a familiar form

$$
x^{2}+y^{2}+10 x+8 y=8
$$

Convert to a circle in standard form by completing the square twice! get x 's together get together

$$
\begin{gathered}
x^{2}+10 x+25+y^{2}+8 y+16=8+25+16 \\
(x+5)^{2}+(y+4)^{2}=49 \\
\text { circle with center }(-5,-4) \text { and radius } r=7
\end{gathered}
$$

$\left(\frac{10}{2}\right)^{2}$
\square

Last
thing

a) Are the functions equivalent?

$$
y=(x-3)(x-5) \quad y=2(x-3)(x-5)
$$

Do they have the
same roots? same roots?
roots are values that produce a funtion value of zero.

Assignment:
3...... 35c, 41b, 45-46, 49-50, 53-54

