Find your seat
(sit in the exact QUeSTIONS ON HW seat you are assigned \bullet^{\bullet})

1. If $g(x)=x^{2}-5$, find
(b) $x(-5)=$

- a) $g\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^{2}-5$

$$
=\frac{1}{2} \cdot \frac{1}{2}-5=\frac{1}{4}-5
$$

$$
=-4.75
$$

$$
=25-5=20
$$

c)

$$
\begin{aligned}
g(\underline{h+1})= & (h+1)^{2}-5 \\
= & (h+1)^{(h+1)-5} \\
& h^{2}+h+h+1=5
\end{aligned}
$$

c) $g(\underline{h+1})=$

$$
\begin{aligned}
& (h+1)^{2}-5 \\
& (h+1)(h+1)-5 \\
& h^{2}+h+h+1-5=1 h^{2}+2 h-4
\end{aligned}
$$

$$
\begin{aligned}
& (x+7)^{2} \neq x^{2}+49 \\
& (x+7)(x+7) \\
& x^{2}+7 x+7 x+49 \\
& =x^{2}+14 x+49
\end{aligned}
$$

2. The graph of $y=x^{2}$ is shown as a dashed curve at right. Estimate the equations of the two other parabolas.

3. Write each expression below in simplest radical form.

$$
\begin{array}{ccc}
\sqrt{75}+\sqrt{27} & \sqrt{x}+2 \sqrt{x} & (\sqrt{12})^{2} \\
\sqrt{\downarrow} & & (3 \sqrt{12})^{2} \\
\sqrt{25} \sqrt{3}+\sqrt{9} \cdot \sqrt{3} & 3 \sqrt{x} & \sqrt{2} \\
\downarrow & \downarrow & \sqrt{3} \\
5 \sqrt{3}+3 \sqrt{3} & & 3^{2} \cdot \sqrt{12}^{2} \\
8 \sqrt{3} & & 9 \cdot 12 \\
& & 108
\end{array}
$$

Yesterday's HWV

Compare your HW
to mine

Today
Analyze Transformations of functions using a new transformation

L Not the title of your notes

What kind of geometric transformation have you made when you replace

$$
\begin{aligned}
& f(x) \quad \text { with } \quad f(x)+k \\
& y=x^{2} \quad y=x^{2}+3 \\
& y=\sqrt{x} \quad y=\sqrt{x}-30 \\
& y=\frac{1}{x}
\end{aligned}
$$

$$
y=\frac{1}{x}+7
$$

What kind of Geometric Transformations occur when you replace

$$
f(x) \text { with }=f(x)
$$

$$
\begin{array}{ll}
y=x^{3} & y=-x^{3} \\
y=|x| & y=-|x| \\
& y=-\sqrt{x}
\end{array}
$$

$$
y=\sqrt{x}
$$

What kind of geometric
transformations happen
of you replace
$f(x)$ with $f(x-h)$?

$$
\begin{array}{ll}
y=x^{2} & y=(x-3)^{2} \\
y=a b^{x} & y=a b^{x+4}
\end{array}
$$

$$
y=\frac{1}{x} \quad y=\frac{1}{x+3}
$$

What kind if:

$$
f(x) \text { to a.f(x) }
$$

$$
\begin{array}{ll}
f(x)=x^{2} & f(x)=6 x^{2} \\
f(x)=\sqrt{x} & f(x)=5 \sqrt{x} \\
f(x)=\frac{1}{x} & f(x)=10 \cdot \frac{1}{x}
\end{array}
$$

What type of transformation takes place when you...

$$
\begin{aligned}
\text { replace } f(x) \quad \text { with } f(-x) \\
y=(x)^{3} \text { with } y=(-x)^{3} \\
y=\frac{1}{(x)} \text { win } y=\frac{1}{(-x)}
\end{aligned}
$$

GDP
$y=x^{3}$ with $y_{1}=(-x)^{3}$
$y_{2}=\frac{1}{x}$ with $y_{1}=\frac{1}{(-x)}$

Summary
Replacing x with $(-x)$ creates a reflection across the y-axis
examples $y=x^{3} \Longrightarrow y=(-x)^{3}$

$$
y=\frac{1}{x} \Rightarrow y=\frac{1}{(-x)}
$$

example

$$
f(x)=x^{2}+8 x+7
$$

Sketch $f(x)$ and $f(-x)$ and label

background

$$
y=(x)^{2}
$$

$y-20$
$x-8$

1) ()$^{2}+(\quad)^{2}=$

$$
\begin{gathered}
x^{2}+y^{2}=4 \\
(x+7)^{2}+(y-2)^{2}=4
\end{gathered}
$$

4)

$$
(x-1)+(y+3)^{2}=9
$$

Sketch a circle that has the

 equation......$(x+3)^{2}+(y-1)^{2}=4$

Graph
$x^{2}+y^{2}=25$ on your calculator

Graph $(x-4)^{2}+(y+5)^{2}=9$

HW avestions

(3) Parent Graph Name: Cubic
a) Parent Equation:
b) Description of Transformation:
c) Sketch Transformed Graph, T(x) (Parent is olready shown)
d) Write coordinates of the new locator point.
e) Write Transformation function, $T(x)$

\qquad
f) List domain of $T(x)$ \qquad List range of $T(x)$ \qquad
g) List equation(s) of any asymptotes of $T(x)$
h) Describe any symmetry

(4) Parent Graph Name: Parabola

h) Parent Equation:
i) Description of Transformation:
j) Sketch Transformed Graph, $T(x)$ (Parent is already shown)
k) Write coordinates of the new locator point.
I) Write Transformation function, $T(x)$
m) List domain of $T(x)$ \qquad List range of $T(x)$ \qquad
n) List equation (s) of any asymptotes of $T(x)$
h) Describe any symmetry

Parent Graph Name: Hyperbola (reciprocal)
o) Parent Equation:
p) Description of Transformation:

Translate 3 units right
and 5 units up
q) Sketch Transformed Graph, $T(x)$
r) Write coordinates of the new locator point.
s) Write Transformation function, $T(x)$

\qquad
t) List domain of $T(x)$ \qquad List range of $T(x)$ \qquad
u) List equations) of any asymptotes of $T(x)$
h) Describe any symmetry
(6) Parent Graph Name:
v) Parent Equation: $y=\frac{-1}{x^{2}}$
w) Description of Transformation:
x) Sketch Transformed Graph, $T(x)$ (Parent is already shown)
y) Write coordinates of the new locator point.
z) Write Transformation function, $T(x)$

aa) List domain of $T(x)$ List range of $T(x)$ \qquad
bb) List equations) of any asymptotes of $T(x)$
h) Describe any symmetry

Work Backwards Starting from graph

Parent Graph Name:

a) Parent Equation:
b) Description of Transformation:
c) Sketch Transformed Graph, $T(x)$ (Parent is already shown)
d) Write coordinates of the new locator point.
e) Write Transformation function, $T(x)$
f) List domain of $T(x)$ \qquad List range of $T(x)$ \qquad
g) List equations) of any asymptotes of $T(x)$
h) Describe any symmetry
work back wands

Parent Graph Name:

h) Parent Equation:
i) Description of Transformation:
j) Sketch Transformed Graph, $T(x)$ (Parent is already shown)
k) Write coordinates of the new locator point.
I) Write Transformation function, $T(x)$
m) List domain of $T(x)$ \qquad List range of $T(x)$ \qquad
n) List equations) of any asymptotes of $T(x)$
h) Describe any symmetry

DIRECTIONS: Simplify the following expressions. The I complete the statement correctly.

1. $\left(3 x^{2}\right)\left(10 x^{4}\right)$

Irena Sendler was born in \qquad Poland in 1910.
a. $\quad 13 x^{8}$
Krakow
b. $30 x^{8}$
Lodz
c. $30 x^{6}$

Warsaw
3. $\left(5 m^{3} n^{7}\right)\left(8 m n^{4}\right)$

Sender was suspended from the school as a result of her protest against the \qquad ; form of
segregation in the seating of students.
a. $\quad 40 \mathrm{~m}^{3} \mathrm{n}^{11}$
gender divide system
b. $40 \mathrm{~m}^{4} \mathrm{n}^{11}$
ghetto-bench system
c. $13 \mathrm{~m}^{5} \mathrm{n}^{10}$ nationalized row system
2. $\left(a^{5} b^{7}\right)\left(a^{3} b^{6}\right)$

She studied \qquad at Warsaw University.
a. $\quad a^{53} b^{76}$ education
b. $\quad a^{15} b^{42}$ medicine
c. $a^{8} b^{13}$

Polish literature
4. $\left(\frac{1}{2} x^{5} y^{3}\right)\left(4 x^{2} y\right)(3 x)$

During World War II, she served as head of the Jewish children's section of Zegota, an underground ___ organization.
a. $2 x^{7} y^{3}$ financial aid
b. $\quad 6 x^{8} y^{4}$ resistance
c. $6 x^{7} y^{3}$ social welfare

[^0]6. $\left(\frac{1}{4} a^{4} b^{5}\right)^{2}$

With the assistance of other Zegota members, Sendler saved roughly during the Holocaust.
a. $\frac{1}{4} a^{8} b^{10} \quad 25$
b. $16 \mathrm{a}^{6} \mathrm{~b}^{7} \quad 250$
c. $\frac{1}{16}{ }^{8} b^{10} \quad 2,500$
8. $\left(\frac{1}{2} m^{3} n^{2}\right)^{2}(8 m n)\left(-2 m^{4} n^{6}\right)$

In 1999, high school students in Kansas staged a play based on Sendler's life, titled \qquad which was adapted to a Hollywood film.
a. $4 m^{8} n^{6}$
b. $-4 m^{11} n^{11}$
c. $\quad-8 \mathrm{~m}^{16} \mathrm{n}^{12}$

Holocaust Heroine
Life in a Jar Underwraps

2 128a, 129-130, 139, 146a

[^0]: 5. $\left(-3 x^{4}\right)^{2}$
 d. Undercover as a plumbing specialist, Sendler smuggled Jewish irfants out of the ghettos in a

 | a. $-9 x^{8}$ | burlap sack |
 | :--- | :--- | :--- |
 | b. $9 x^{6}$ | raincoat |
 | c. $9 x^{8}$ | tool box |

 7. $\quad\left(5 x y^{3}\right)^{2}\left(2 x^{5} y^{2}\right)^{3}$

 When she was discovered by the Nazis she was beaten and suffered
 a. $200 x^{17} y^{12} \quad$ broken arms and legs
 b. $10 x^{12} y^{10} \quad$ internal bleeding
 c. $150 x^{15} y^{14} \quad$ loss of hearing

