Pick Up the Warm Up
Do not use a Calculator (except for to check your answers)

HW Help
Hotline

Shifts to the right 2 units and down 5 units.

$$
\text { Shifts down } 4 \text { units. }
$$

$$
\begin{gathered}
y=(x-2)^{2}-5 \\
y=(x+3)^{2}+1 \\
y=(x)^{2}-4 \\
y=x^{2}-4
\end{gathered}
$$

Shifts right 10.9 units.

$$
y=(x-10.9)^{2}
$$

Stretched vertically by a factor of 2.5 and shifted 9.8 units left and 8 units down.

$$
y=2.5(x+9.8)^{2}-8
$$

Compressed vertically by a factor of 0.4 and shifted 7.3 units to the right.

$$
y=0.4(x-7.3)^{2}
$$

\qquad
$\sqrt{3 \cdot \sqrt{3}}=\sqrt{9}=3 \quad \sqrt{\operatorname{dog} \cdot \sqrt{d o g}=}$
$\sqrt{3}+\sqrt{3}=2 \sqrt{3}$
$\sqrt{24}=\sqrt{4} \sqrt{6}=2 \sqrt{6}$
$\sqrt{\frac{7}{16}}=\frac{\sqrt{7}}{\sqrt{16}}=\frac{\sqrt{7}}{4}$ or $\frac{1}{4} \sqrt{7}$
$\frac{\sqrt{250}}{\sqrt{10}}=\sqrt{\frac{250}{10}}=\sqrt{25}=5$

Example of a

$$
y=x^{2}
$$

for a quadratic function

Example or a Make Transformations
Parent Graph

$$
y=a(x-k)^{2}+k
$$

for a quadratic function

Example of a Make Transformations
Parent Graph

$$
y=a(x-h)^{2}+k
$$

$$
\frac{\hbar}{\curvearrowleft} y=-\frac{1}{2}(x+3)^{2}-7
$$

$$
y=x^{2}
$$

for a quadratic function

Example of a Parent Graph

Make Transformations

$$
y=a(x-h)^{2}+k
$$

$$
y=x^{2}
$$

$$
y=-\frac{1}{2}(x+3)^{2}-7
$$

af $y=(x+4)^{2}$
for a quadratic function

Example on a
Parent Graph
Make Transformations

$$
y=a(x-h)^{2}+k
$$

$$
y=x^{2}
$$

$$
\text { vf } \quad y=(x+4)^{2}
$$

for a quadratic function

$$
\Downarrow \quad y=1.1(x-4)^{2}-5
$$

Next Few Lessons
(2.2)

New Parent \rightarrow Transaction \rightarrow form
GOAL:
Transform any function using same techniques

$$
y=x^{3}
$$

You'll experiment with
Transforming $y=x^{3}$

QUICK SKetch

On a invar art large piece of graph paper

- keep each square at 1 unit
(a) Graph $y=x^{3}$
(b) With your group discuss and write down the domain and range.
(c) Label any special points or asymptotes (if any).

Can make one darker

$$
\begin{aligned}
& Y_{1}=L^{\text {experimental }} \begin{array}{l}
\text { function }
\end{array} \\
& Y_{2}=x^{3}
\end{aligned}
$$

a) Find and graph an equation that will shift(translate) $y=x^{3}$ 8 units left. (label the equation $\begin{gathered}\text { next to } i l \\ \text { graph. }\end{gathered}$

What are the coordinates of the special point (,)

(b) Shift $y=x^{3}$ down 8 UNits and vertically shrink by a factor of 0,2

- Graph with a dotted line
- label the equation

$$
\begin{aligned}
& y=0.2(x)^{3}-8 \\
& y=.2 x^{3-8}
\end{aligned}
$$

(c) Find and graph of a transformation that is translated 7 unis right, down 4, and with a negative orientation
(d) Transform $y=x^{3}$ so it flips upside down
(but you dort need to graph it.

Check your homework

2-61 Leadfoot Letlie 80 mph leif 65 mph
a) how long for 50 miles

$$
d=r t
$$

$$
\begin{aligned}
50 & =80 \cdot t \\
t & =\frac{50}{80}=.625 \text { hours } \\
& \times 6^{\circ} \quad 37.5 \mathrm{~min}
\end{aligned}
$$

(b) 50 miles at
speed limit

$$
\begin{gathered}
d=r+\quad 50=65 \cdot t \\
\leqslant \\
.77 \text { hours }
\end{gathered}
$$

(c) Speeding ticket $\# 200$

What would be her cost per minute of the time saved by speeding?
.77 hows - . 625 hours $=.145$ hours

$$
\approx 8.7 \mathrm{mino}
$$

So $\frac{\$_{200}}{8.7}$

$$
\approx \frac{\$ 22.99}{\mathrm{~min}}
$$

2-50 (b) $y=x^{x^{2}-4 x+9}$

$$
y=x^{2}-2 x \mid+9
$$

$$
\begin{aligned}
& \text { (d) } y=\underbrace{x^{2}+7 x-2} \\
& y=\frac{x^{2}}{} \frac{7}{2} x \\
& \frac{7}{2} x
\end{aligned}
$$

b) with 2 lines of Sym

c) infinite?

$$
2-60 \quad y=3 x-1 \quad 2 y+5 x=53
$$

$2-6^{2}$
(a)

$$
\begin{aligned}
& x^{2}=5^{2}+6^{2} \\
& x=\sqrt{25+36} \\
& x=\sqrt{61}
\end{aligned}
$$

(c)

(d)

Soh-Cah-Toa

2-63
(a) house purchased for ${ }^{\$ 120,000}$ annual appreciation 6^{\prime}
(b) bacteria $180 \quad 22^{\bullet \bullet}$ per hour

On the road to becoming.....
proficient with transforming parabolas $\downarrow M \downarrow$
proficient at writing functions of parabolas in both standard form and graphing form

create a parabolic function that matches a situation.

Create a parabolic function that matches a situation. models

Standard form: $y=a x^{2}+b x+c$
Graphing form: $y=a(x-h)^{2}+k$
Factored form: $y=a(x+b)(x+c)$.

Perform Mathematical ${ }^{\text {role }}$ Modeling with Parabolas

©

read $2-64$ p. 79

$$
y=a(x-4)^{2}+3
$$

$$
y=a(x-h)^{2}+k \quad y=a(x-h)^{2}+k
$$

Move on to $2-66$

When Ms. Bibbi kicked a soccer ball, it traveled a horizontal distance of 150 feet and reached a height of 100 feet at its highest point. Sketch the path of the soccer ball and find an equation of the parabola that models it.

At the skateboard park, the hot new attraction is the U-Dip, a cement structure embedded into the ground. The cross-sectional view of the U-Dip is a parabola that dips 15 feet below the ground. The width at ground level, its widest part, is 40 feet across. Sketch the cross-sectional view of the U Dip, and find an equation of the parabola that models it.

Model:

$$
\begin{aligned}
& y=a(x-20)^{2}-15 \\
& 0=a(40-20)^{2}-15 \\
& 0=a \cdot 400-15 \\
& 15=400 a \\
& a=\frac{15}{400}=\frac{3}{80}=0375
\end{aligned}
$$

BBB.

Mid
Chapter
Check

Assignment

2-69-71,72a,73-74,75a,91

