Warm Up
ransfor the parabola $y=2 x^{2}$ so it slides 5 units to the left:

$$
y=\frac{2(x+5)(x+5)}{2(x+5)^{2}} \begin{gathered}
\text { Then graph both } \\
\text { Simultaneously ton your } E x \\
\text { and make a sketch }
\end{gathered}
$$

Transform the parapola $y=x^{2}+5 x+4$ 8 units to the rights:

$$
y=(x-8)^{2}+5(x-8)+4
$$

Graph and make a stretch

$$
y=(x-8)^{2}+5(x-8)+4
$$

1. $4 x^{2}-1=$
2. $36 x^{2}-9=9\left(4 x^{2}-1\right)$
3. $x^{2}-9=(x+3)(x-3)$ $9(2 x+1)(2 x-1)$
4. $100 x^{2}-81=(10 x+9)(10 x-9)$
5. $25 x^{2}-4=$
6. $81 x^{2}-121=(9 x+11)(9 x-11)$ $9 \times \quad 11$
7. $x^{2}-16=(x+4)(x-4)$
8. $144 x^{2}-16=16\left(9 x^{2}-1\right)$ $=16(3 x+1)(3 x-1)$

- Cross out the correct answers below. Use the remaining letters to complete the statement.

$(x+13)(x-13)$	$16(3 x-1)(3 x-1)$	$(x-4)(x+4)$	$(6 x+5)(6 x-5)$	$(25-4 x)(25+4 x)$	$(x+1)(x-1)$
THE	SUM	UFA	PRO	QUO	DUE
$(9+x) \cdot(9-x)$	$9 \cdot(2 x-1)(2 x+1)$	$(x+7)(x-7)$	$(2 x+1)(2 x-1)$	$(9 x+1)(9 x-1)$	$(x+2)(x-2)$
TOF	TIE	THE	STA	SUM	AND
$(10-x)(10+x)$	$(5 x+3)(5 x-3)$	$(x-5)(x+5)$	$(8 x+1)(8 x-1)$	$(11 x-7)(11 x+7)$	$(x-6)(x+6)$
WAS	RIF	HAS	FR	MAN	SER

7. $x^{2}-16=$
8. $144 x^{2}-16=$
9. $x^{2}-25=$
10. $100-x^{2}=$
11. $121 x^{2}-49=$
12. $625-16 x^{2}=$
13. $x^{2}-36=$
14. $49 x^{2}-16=$

$$
\begin{aligned}
& \frac{\sin 55^{\circ}}{x}=\frac{\sin 89^{\circ}}{10} \\
& x \cdot \sin 89^{\circ}=10 \cdot \sin 55^{\circ} \\
& x=\frac{10 \sin 55^{\circ}}{\sin 89^{\circ}} \approx 8.2
\end{aligned}
$$

$$
\begin{aligned}
& \text { Questions } \\
& \text { on HW }
\end{aligned}
$$

$2-17 \quad p(x)=x^{2}+5 x-6$
(a) $\underset{x \rightarrow 0}{ }(0,-6)$
(b) x-intercept $\rightarrow 000$

$$
\begin{array}{ll}
& 0=x^{2}+5 x-6 \\
a=1 \\
b=5 & \text { Quadratic } \\
c=-6 \text { Formula }
\end{array}>\begin{aligned}
& \text { Factor, then } \\
& \text { Use the zero } \\
& \text { product property }
\end{aligned}
$$

$$
\begin{aligned}
x= & \frac{-(5) \pm \sqrt{(5)^{2}-4(1)(-6)}}{2(1)} \\
= & \frac{-5 \pm \sqrt{49}}{2}=\frac{-5 \pm 7}{2} \\
& x=\frac{-5+7}{2} \frac{2}{2}=1 \quad \frac{x+\operatorname{tit}}{(1,0)} \\
& x=\frac{-5-7}{2}=\frac{-12}{2}=-6 \quad(-6,0)
\end{aligned}
$$

$$
\begin{aligned}
& 0=x^{2}+5 x \\
& 0=x(x+5) \quad(0,0) \\
& x=0 \\
& x+5=0 \\
& x=-5
\end{aligned}
$$

(d)

$$
\begin{aligned}
& p(x)-q(x) \\
& x^{2}+5 x-6-\left[x^{2}+5 x\right] \\
= & x^{2}+5 x-6-x^{2}-5 x \\
= & -6
\end{aligned}
$$

(19(a) $\left(\frac{1}{81}\right)^{-\frac{1}{4}}=\left(\frac{81}{1}\right)^{\frac{1}{4}}=\sqrt{ }$
(b) $x^{-2} y^{-y}=$
(c) $(2 x)^{-2}\left(16 x^{2} y\right)^{\frac{1}{2}}$
(b) $x^{-2} \cdot y^{-4}$

$$
=\frac{1}{x^{2}} \cdot \frac{1}{y^{4}}
$$

$$
\frac{1}{x^{2} y^{y}}
$$

(c) $(2 x)^{-2}\left(16 x^{2} y\right)^{\frac{1}{2}}$
(20) First Week (each buy a popcorn +1 drink)

$$
p=P_{p \text { pop }}
$$

d= pice
of
dink, $2^{\text {nd }}$ (each by \# $_{8}$ tret +1 popcorn +3 drinks drink, $2 w$

$$
\begin{aligned}
& 3 d+1 p+3(8)=37.50 \\
& 24 \\
& 3 p+3 d=22.50 \\
& p+3 d=13.50
\end{aligned}
$$

$$
\begin{aligned}
3 p+\beta d & =22.50 \\
+p+d & =13.50 \\
+\quad & =9.00 \\
2 p & =4.50
\end{aligned}
$$

$21 c \quad(0,5) \quad(5,0)$

$$
\begin{array}{r}
d=\sqrt{(0-5)^{2}+(5-0)^{2}} \\
\sqrt{(-5)^{2}+5^{2}} \\
\sqrt{50}=\sqrt{25} \sqrt{2}=5 \sqrt{2}
\end{array}
$$

(18) (a)
$4^{z}=8$

$$
\begin{aligned}
& \left(2^{2}\right)^{z}=2^{3} \\
& 2^{2 z}=2^{3} \\
& 2 z=3
\end{aligned}, \quad \begin{aligned}
& 2 z=3 \\
& z=\frac{3}{2}
\end{aligned}
$$

-

(a) ${ }^{3}$

$$
\left\{\begin{array}{l}
3 p+3 d=22.50 \\
p+3 d+3(8)=37.5
\end{array}\right.
$$

(b)
(b)

$$
\begin{aligned}
& 4^{\frac{2 z}{3}}=8^{z+2} \\
& \left(2^{\frac{2 z}{3}}\right)^{\left(2^{3}\right)^{z+2}} \\
& 2^{\frac{4 z}{3}}=2^{3(z+2)}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& 4^{\frac{2 z}{3}}=8^{z+2} \quad 1^{\text {exponenter }}=\int \begin{array}{c}
\text { exponent } \\
\text { on } \\
\text { right }
\end{array} \\
& \left(2^{2}\right)^{\frac{2 z}{3}}\left(2^{3}\right)^{z+2} \\
& \frac{4 z}{3}=3(z+2) \\
& 2^{\frac{4 z}{3}}=2^{3(z+2)} \quad 3\left(\frac{4 z}{3}\right)=9(z+2) \\
& \begin{aligned}
& 4 z=9 z+18 \\
&-9 z
\end{aligned} \\
& \begin{aligned}
-5 z & =18 \\
z & =-\frac{18}{5}
\end{aligned}
\end{aligned}
$$

where will

$$
y=(x-8)(x-8) \text { touch the } x \text {-axis? }
$$

$$
\begin{aligned}
& y=(x+2)(x+2) \\
& y=(x-4)^{2} \\
& y=(x+3)(x-1)
\end{aligned}
$$

NOTES

$$
y=4\left(x-x_{0}\right)^{2}
$$

Determine all of the ways to transform a PARABOLA by changing its equation.

Vertical stretch

You'll Start with an investigation that will require you to record Transformations

Color the base function

Keep a record transformations with then equations

Work through
$2-\ldots 13$ on page 62

B.B

Closure

Without Using a GDC, sketch the following....

$$
\mathbf{y}=\frac{1}{2}(\mathbf{x}+3)^{2}-4
$$

Quiz
on Sequences $\frac{1}{4}$ Expo. Functions tomorrow

Turn in HW Packet with 6 assignments.

Assignment

2. 23 to 27, 28a, 29
