Pick up the Warm Up

(2) Write each expression in simpler rad

$$
\begin{aligned}
& 2 \sqrt{x}+3 \sqrt{y}+6 \sqrt{x}+\sqrt{y}=8 \sqrt{x}+4 \sqrt{y} \\
& (3 \sqrt{5})^{2}=3^{2} \cdot \sqrt{5}^{2}=\sqrt{5} \\
& \frac{\sqrt{72}}{\sqrt{2}}=\sqrt{\frac{72}{2}}=\sqrt{36}=6 \\
& \sqrt{\frac{5}{16}}=\frac{\sqrt{5}}{\sqrt{16}}=\frac{\sqrt{5}}{4}
\end{aligned}
$$

(3) Russell wilson was trying to use the x-intercept method to rewrite the parabola $y=x^{2} \overline{10} x+16$ to graphing form. Finish what he started.

$$
\begin{array}{rl}
0= & x^{2}-10 x+16 \\
0= & (x-8 p x-2) \\
\sum_{p=0} x-2=0 & \text { vertex } \\
x-9) \\
x=8 x=2 & y=(5)^{2}-10(5)+16 \\
& 25-50+16 \\
& \\
& =-9
\end{array}
$$

$x=\frac{8+2}{2}$个 two x-intercepts Graphing form is $y=(x-5)^{2}-9$ $=5$ $\frac{+}{2}=$
(4) Use the completing the Square method to check the result in \#3

$$
\begin{gathered}
y=\frac{x^{2}-10 x}{}+16 \\
\left.y+25=\frac{x-5}{\frac{x}{\mid-5 x}-5 x} \right\rvert\,+16 \\
y+25=(x-5)^{2}+16 \\
-25 \\
-25
\end{gathered}
$$

$$
y=(x-5)^{2}-9
$$

HW
Questions
$72 a)$ exponential equation

$$
(2,9) \quad(4,324)
$$

double

$$
y=a b^{x} \quad y=a b^{x}
$$

$$
a b^{2}=9 \quad a b^{4}=324
$$

$$
\begin{array}{rl}
a(6)^{2} & =9 \\
36 a & =9 \\
a & =\frac{9}{36}=\frac{1}{4} \\
x & x \\
y & =\frac{1}{41}(b)
\end{array}
$$

\square
$73 a \quad y=2 x^{2}+3 x-5$
Find x ard y
$\begin{aligned} & x \text {-inter } \\ & y=0\end{aligned} 2 x^{2}+3 x-5=0$

$$
y=0
$$

\square
(b) $y=\sqrt{2 x-4}$
y-int $(0, y)$
x-intercepts) $(x, 0)$

$$
\begin{gathered}
(\sqrt{2 x-4})=(0)^{2} \\
2 x-4=0 \\
x=2 \\
(2,0)
\end{gathered}
$$

$$
\begin{aligned}
y= & \sqrt{2(0)-4} \\
= & \sqrt{-4} \\
& \text { so. no y-int. }
\end{aligned}
$$

91 a

$$
\begin{aligned}
& \sqrt{x}+\sqrt{y}+5 \sqrt{x}+2 \sqrt{y} \\
& \sqrt{x}+5 \sqrt{x}+\sqrt{y}+2 \sqrt{y}
\end{aligned}
$$

b $\quad(2 \sqrt{8})^{2}$

2-74. See graphs at right.
a: stretched parabola, vertex $(0,5)$
b: inverted parabola, vertex $(3,-7)$

2-75. a: $x= \pm 5$
b: $x= \pm \sqrt{11}$
date for the Ch. 2 Test:
Friday, October 20th

GOAL:
Transform any function using same techniques

TODAY's AIN: 2 New parents

$y=x^{3}$

at the moment weill focus on two of them.

You need to be in pairs
Each person needs a Promade graph for this activity

In your Pairs

One of you

The other....

Each of you:
I. Graph your equation on a graph paper given to you (you can tape them into your notes later)
II. Share your results. Make a quick sketch of the other person's graph on your paper.
III. Work together to write down the domain and range of both functions.

You are about to make transformations with

YOUR function
but careful when you do $y=\frac{1}{x}$
CAUTION: Shifts of $y=\frac{1}{x}$

Find and graph the following tranformation for your function

vertical shift up, 4 units

a) Next to the graph, write it's equation
b) When finished, copy the results from your partner on to your paper.

Next transformation

Horizontal shift right, 5 units \& with negative orientation

a) Next to the graph, write it's equation
b) When finished, copy the results from your partner

$$
y=\frac{1}{x}
$$

$$
\begin{aligned}
& y=\frac{-1}{(x-5)} \\
& y=-\frac{1}{x-5}
\end{aligned}
$$

$$
y=\sqrt{x}
$$

$$
\begin{aligned}
& y=-1 \sqrt{x}+5 \\
& -1 \sqrt{x-5} \\
& y=-\sqrt{x-5}
\end{aligned}
$$

c) vertical stretch by a factor of 2

$$
\begin{aligned}
& y=\sqrt{x} \\
& y=a \sqrt{x}
\end{aligned}
$$

$$
\begin{aligned}
y & =\frac{1}{x} \\
& =\frac{2}{7}\left(\frac{1}{x}\right) y=\frac{2}{x}
\end{aligned}
$$

$$
2 \cdot \frac{1}{x}
$$

One general way of writing an equation for a parabola is to use graphing form:

$$
y=x^{2} \quad y=a(x-h)^{2}+k
$$

With your group, write the general equation for both of today's functions below your graphs

$$
\begin{array}{ll}
y=\sqrt{x} & y=a \sqrt{x-h}+k \\
y=\frac{1}{x} & y=a\left(\frac{1}{x-h}\right)+k
\end{array}
$$

Notes from 2.2.1 Day 1

Assignment:
2 -81-82, 84bd, 85, 86ac, 88, 90,92

If you are celebrating the Yom Kippur holiday, let me know

\square

