Check the HW from last night

 (yes, it was long) ask questions!
Pick up the Warm Up do Side 1 only

- also pick up the Notes on Quadratic Functions

You can tape them in your notes if you choose.

Using $F_{A C T O ̛ i n g ~}+Z 8_{0} P$.

$n=\frac{7}{2}$
$n=2$

Using FACTOring $+Z_{80} 8_{0}$.

$$
\begin{aligned}
& 2 n^{2}-11 n+14=0 \\
& (2 n-7)(n-2)=0 \\
& a \cdot b=0
\end{aligned}
$$

$$
\begin{aligned}
& 2 n=7 \quad n=2 \\
& n=\frac{7}{2} \\
& n=3.5 \\
& \begin{array}{cc}
-1 n & -28 n \\
-2 n & -14 n \\
-4 n & -7 n
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{11+3}{4}=\frac{14}{4}=\frac{7}{2} \\
& x=\frac{11-3}{4}=\frac{8}{4}=2
\end{aligned}
$$

$$
x=\frac{11 \pm 3}{4}
$$

Similarly, there are three forms of a single-variable quadratic equation.
Standard form: Any quadratic equation written in the form $a x^{2}+b x+c=0$.
Factored form: Any quadratic equation written in the form $a(x+b)(x+c)=0$.
Perfect Square form: Any quadratic equation written in the form $(a x-b)^{2}=c^{2}$.

Solutions to a quadratic equation can be written in exact form (radical form) as in

$$
x=\frac{-3+\sqrt{5}}{2} \text { or } x=\frac{-3-\sqrt{5}}{2}
$$

Solutions can also be estimated and written in approximate decimal form:

$$
x=-0.38 \text { or } x=-2.62
$$

$$
x=\frac{-3+\sqrt{5}}{2}
$$

Q

$$
\begin{aligned}
& \text { X.F. } 2 n^{2}-11 n+14=0 \quad a=2 \quad \begin{array}{c}
b=-11 \\
c=14
\end{array} \\
& X=\frac{-(-11) \pm \sqrt{(-11)^{2}-4(2)(14)}}{2(2)} \\
& X=\frac{11 \pm \sqrt{9}}{4} \rightarrow X=\frac{11+3}{4}=\frac{14}{4}=3.5 \\
& X=\frac{11 \pm 3}{4}, x=\frac{11-3}{4}=\frac{8}{4}=2
\end{aligned}
$$

Questions
on
HO?
$35 a \quad y^{2}-6 y=0$
Solve
without using

$35 b y^{2}-6 y=0 \quad b \quad n^{2}+5 n+7=7$
$35<$

$$
2 t^{2}-14 t+3=3 \quad \frac{1}{3} x^{2}+3 x-4=-4
$$

$$
y=0.8(x+2)^{2}+5
$$

$$
\begin{aligned}
& 40<\left(2 x^{2} \cdot y^{-3}\right)\left(3 x^{-1} \cdot y^{5}\right) \\
& 2 \cdot x^{2} \cdot y^{-3} \cdot 3 \cdot x^{-1} \cdot y^{5} \\
& 6 \cdot x^{2} \cdot x^{-1} \cdot y^{-3} \cdot y^{5}=6 x^{2} y^{2} \\
&=6 x y^{2}
\end{aligned}
$$

$$
\begin{gathered}
36 c 0=1 x^{2}-14 x+40 \\
0=(x-4)(x-10) \\
x-4=0 \quad x-10=0 \\
x=4 \quad x=10 \\
\text { avg }=\frac{4+10}{2}=7 \\
(7,-9)
\end{gathered}
$$

Graphing Form

$$
y=(x-7)^{2}+9
$$

$$
\begin{array}{l|l}
\downarrow_{f(7)} \uparrow \quad \\
& \\
\end{array}
$$

39 Make predictions about how many places each will touch the x-axis.
(a) $y=(x-2)(x-3)$
(b) $y=(x+1)^{2}$
(C) $y=x^{2}+6 x+9$
(d) $y=x^{2}+7 x+10$
(e) $y=x^{2}+6 x+8$
(f) $y=-x^{2}-4 x-4$

standard form

$$
y=a x^{2}+b x+c \left\lvert\, \begin{gathered}
\uparrow \\
y-\text { intercept } \\
(0, c)
\end{gathered}\right.
$$

graphing form

$$
y=a(x-h)^{2}+k
$$

where (h, k) is the vertex

$$
\begin{aligned}
& \frac{\text { Example }}{y=3 x^{2}+2 x-5} \\
& f(x)=2 x^{2}-7 x \\
& \quad(x+4)(x+4)-6
\end{aligned}
$$

$$
y=1(x+4)^{2}-6
$$

$$
\begin{gathered}
(-4,-6) \text { is the } \\
\text { vertex }
\end{gathered}
$$

factored form

$$
y=a(x+b)(x+c) \quad \text { where } \quad(-b, 0)
$$

$(-b, 0)$ and $(-c, 0)$ are the x-intercepts

$$
Q=2(x-3)(x+7)
$$

Each function form has its equation equivalent.

$$
\begin{gathered}
3 x^{2}+2 x-6=0 \\
\frac{1}{2}(x-7)(x+2)=0 \\
(2 x-3)^{2}=16
\end{gathered}
$$

Graphing is fast if the equation is in Graphing form.

But what if its not.

$$
y=x^{2}-7 x+9
$$

now
Take
Notes

Section 2.1.4

How can we convert?

$$
y=x^{2}-4 x+11
$$

standard

$$
y=(x-2)^{2}+7
$$ form graphing form

Two Methods - (1) Completing the square (2) Average the x-intercepts

Completing the Square

to convert from Standard to Graphing Form

$$
y=x^{2}-4 x+11
$$

$$
y=(x-2)(x-2)+7
$$

$$
y=(x-2)^{2}+7
$$

The technique:

$y+9=(x+3 x+3)^{3 x}-5 x-9 x^{2}$

$$
y=(x+3)^{2}-14 k=9
$$

Mont
$(0,-5)$

$$
\begin{aligned}
& y=x^{2}+6 x-5
\end{aligned}
$$

The technique:

$$
\begin{aligned}
y & =x^{2}+6 x-5 \\
y & =\begin{array}{|l|l|}
x x^{2} & 3 x \\
\hline 3 x & 9 \pi \\
\hline
\end{array}
\end{aligned}
$$

$$
\text { Since } 3 x \cdot 3 x=9 x^{2}
$$

$$
y=(x+3)(x+3)-14
$$

Convert, find vertex, then sketch $f(x)$

$$
\begin{aligned}
& f(x)=x^{2}-4 x+9 \\
& f(x)+4= \\
& \begin{array}{|c|c|}
\hline x & -2 \\
-2 x^{2} & -2 x \\
-2 x & 4 \\
\hline & +9 \\
\hline
\end{array}+-2 x-2 x=4 x^{2} \\
& f(x)+4=(x-2)^{2}+9 \\
& f(x)=(x-2)^{2}+5 \\
& y-\operatorname{int}^{-1}(0, y)
\end{aligned}
$$

$$
f(x)=(x-2)^{2}+5
$$

y-intercept ?axis of symmetry?

Just Watch Method 2

Convert standard form to graphing form (using x-intercepts)

How can we find the middle?

standard form can't always be trusted to find x-intercepts.

$$
y=x^{2}+8 x+18
$$

Why ?

now go to the Classwork on the back of the Warm Up

Convert $y=x^{2}-2 x-15$ to
Graphing Form using both methods.
$y=x^{2}-2 x-15$
completing the square

$$
\begin{aligned}
& y+1=x{\underset{-1}{x^{2}} \mid-x}_{1-x}^{\mid} \mid \\
& t
\end{aligned}-15
$$

$$
\begin{aligned}
& \quad y=x^{2}+8 x+10 \text { with } \begin{array}{l}
x \text {-interments } \\
(\text { set } y=0)
\end{array} \\
& x^{2}+8 x+10=0 \\
& a=1 \\
& b=8 \\
& c=10
\end{aligned}
$$

$$
y=x^{2}-2 x-15
$$

method of x-intercepts

Vertical stretch factor
find the y-coordinate of the vertex.
find x-intercepts

$$
\begin{gathered}
0=x^{2}-2 x-15 \\
0=(x+3)(x-5) \\
x=-3 \quad x=5
\end{gathered}
$$

average the x-intercepts

Graphing Form

$\frac{-3+5}{2}=$
now sketch the graph including both intercepts

$$
y=(x-1)^{2}-16
$$

Use your graphing calculator to verify that they are equivalent

$$
\begin{aligned}
& y_{1}=x^{2}-2 x-15 \\
& y_{2}=(x-1)^{2}-16
\end{aligned}
$$

In your Algebra Log
do 2 -42b \longrightarrow Fist by x-mentercepts on page 71

$$
f(x)=x^{2}+8 x+10
$$

$$
\begin{aligned}
& 0=x^{2}+8 x+10 \\
& a=1 \\
& b=8 \quad X=\frac{-(8) \pm \sqrt{(8)^{2}-4(1)(10)}}{2(1)} \\
& c=10 \\
& X=\frac{-8 \pm \sqrt{24}}{2}=\frac{-8 \pm 2 \sqrt{6}}{2}=\frac{1(-4 \pm \sqrt{6})}{2}
\end{aligned}
$$

x-intercepts $(-4+\sqrt{6}, 0)(-4-\sqrt{6}, 0)$ $y=(x+4)^{2}-6$ arg $(-4,-6 R)(-4)^{2}+8(-4)+10$
$2-\ldots 50 a c, 52,53 a, 54,55 b c, 56 a$
$\frac{-4+\sqrt{6}+-4-\sqrt{6}}{2}=\frac{-8}{2}=-4$
\equiv Round to $2 d p$
$25.36 \quad 25.4 \quad 25.368$
\leqslant or to nearest al
\& or to nearest hundredth

$$
\begin{gathered}
\sqrt{24}=\sqrt{4} \sqrt{6} \sqrt{3} \sqrt{8} \\
\sqrt{4} \sqrt{6}=\sqrt{k} \sqrt{2} \\
2 \sqrt{6} \\
\sqrt[3]{2}
\end{gathered}
$$

$$
\begin{aligned}
& f(x)=x^{2}+8 x+10 \\
& a=1 \\
& b=8 \quad x=\frac{-(8) \pm \sqrt{(8)^{2}-4(1)(10)}}{2(1)} \\
& c=10
\end{aligned}
$$

$$
\frac{-8 \pm \sqrt{24}}{2}=
$$

$$
\begin{aligned}
& \text { then by Completing the Square } \\
& f(x)=x^{2}+8 x+10
\end{aligned}
$$

Assignment
2-..... 50ac, 52, 53a, 54, 55bc, 56a

