

Go to the textbacker
to check out The soft cover

Mathematical Studies textback.

On the way to the library
use the HW Tally as necessary.

A farmer wishes to enclose a rectangular field using an existing fence for one of the four sides.

- (a) Write an expression in terms of x and y that shows the total length of the <u>new</u> fence.
- (b) The farmer has enough materials for 2500 metres of new fence. Show that

(1)

(1)

(c) A(x) represents the area of the field in terms of x.

4=2500-2×

(i) Show that

(ii) Find A'(x).

(1)

(2)

(iii) Hence or otherwise find the value of x that produces the maximum area of the field.

(3)

(b) the angle between VC and the base ABCD.

Sets, Venn Diagrams

and Probability

H.H. textbook Ch. 1, 4, 13

There will a combination of in class assignments and out of class assignments, occasionally no homework or shorter assignments.

Many of these, including in-class assignments, will get recorded on your new HW recording sheet as usual.

A city has three newspapers A, B, and C. Of the adult population, 1% read none of these, 36% read A, 40% read B, 52% read C, 8% read both A and B, 11% read both B and C, and 13% read all three newspapers. What percentage of the adult population read:

- a) Newspaper A only?
- b) Newspaper B or newspaper C?
- c) Newspaper A or B or C?

The work we will do in this unit will enable us to organize the this information and deal with questions like the newspaper problem.

but first we need to:

- · Understand Types of Number Sets
- · Use Set Vocabulary
- · Write in Set Builder Notation

ī

Pick Up W.S. #1

\mathbb{W}	arm	$\mathbb{U}_{\mathbb{P}}$	Sets	of	Numbers

(look at your Notation List at the end of your Formula Packet)

List the factors of 10:

List the multiples of 3:

List the first six prime numbers:

List the first five numbers in the set, \mathbb{N} :

List a variety of numbers in the set, \mathbb{Z} :

List a variety of numbers in the set, \mathbb{Q} :

List a few numbers that are $\underline{\mathsf{not}}$ in the set, $\ R$:

Warm Up -----Sets of Numbers (look at your Notation List at the end of your Formula Packet) List the factors of 10: 1, 2, 5, 10List the multiples of 3: 3, 6, 9, 12, 15, ...List the first six prime numbers: 2, 3, 5, 7, 11, 13List the first five numbers in the set, N: 0, 1, 2, 3, 4

List a variety of numbers in the set, Z: 7 -3 0 62 -11

List a variety of numbers in the set, $Q: \frac{3}{3} - 0.23 + 6 + 2\frac{1}{3}$ List a few numbers that are <u>not</u> in the set, $R: \sqrt{-6} + 3i + 5 - 4$

a number in ${f R}$ but not in any other above ??

Warm Up:

Quietly read through HH pp. 18-19 up to example 1

then answer as many questions as you can on the back side "What Are Sets?"

/ -			
What	250	cote	2
hvviial	are	3613	
~		~	
		\sim	

Definitions

In the table below, define the terms on the left hand side

Set		
Subset		Fled the collector
Union of two sets		'Rot. j
Complement of a set		
Intersection of two sets		
Element		

And now state what is meant by each of these symbols in the context of set notation

first Set or 2nd set or both
first set AND 2nd Set
is an element of
proper subset

Examples

Give an example of two sets of people that would have no intersection.

Give another where you would expect an intersection.

Now, a third where one would be a subset of another.

ı

If $A \subseteq B$, and $A \ne B$, then A is said to be a <u>proper</u> <u>subset</u> of B and can also be denoted by $A \subset B$.

For example
$$\{1, 2\} \subseteq \{1, 2, 3\}$$
.
Also $\{1, 2\} \subset \{1, 2, 3\}$.

example

Let's make a union of sets A and B.

 $A \cup B$

$$A = \{4, 7, 10, 13\} + B = \{-1, 0, 1, 2\}$$

{-1,0,1,2,4,7,10,13}

When giving a list showing the elements of a set,
 use curly brackets:

_earning Check Consider the sets A = {2,3,5,7} and B = {2,4,6,8}. Which of the following are true?

3 ∈ A ?

4 ∈ A ?

 $\{5\}\subseteq A$?

{5} ⊂ A ?

Go back to the front side

Ī

Given two sets:
$$A = \{1, -3, 5, -7, 9\}$$
 $B = \{\frac{1}{2}, 2, 4, -5, 5, 6\}$

Find the following.

1. $A \cup B$

2. $A \cap B$

3. $A \cap B$

3. $A \cap B$

4. $A \cap B$

1. $A \cap B$

2. $A \cap B$

3. $A \cap B$

4. $A \cap B$

5. $A \cap B$

6. $A \cap B$

7. $A \cap B$

8. $A \cap B$

9. $A \cap B$

1. $A \cap B$

1. $A \cap B$

1. $A \cap B$

2. $A \cap B$

1. $A \cap B$

2. $A \cap B$

3. $A \cap B$

1. $A \cap B$

1. $A \cap B$

2. $A \cap B$

3. $A \cap B$

4. $A \cap B$

1. $A \cap B$

1. $A \cap B$

2. $A \cap B$

3. $A \cap B$

4. $A \cap B$

1. $A \cap B$

1. $A \cap B$

1. $A \cap B$

2. $A \cap B$

3. $A \cap B$

4. $A \cap B$

1. $A \cap B$

1. $A \cap B$

1. $A \cap B$

2. $A \cap B$

2. $A \cap B$

3. $A \cap B$

4. $A \cap B$

1. $A \cap B$

1. $A \cap B$

1. $A \cap B$

2. $A \cap B$

2. $A \cap B$

3. $A \cap B$

4. $A \cap B$

1. $A \cap B$

2. $A \cap B$

2. $A \cap B$

2. $A \cap B$

3. $A \cap B$

4. $A \cap B$

1. $A \cap B$

1. $A \cap B$

1. $A \cap B$

2. $A \cap B$

3. $A \cap B$

4. $A \cap B$

1. $A \cap B$

1. $A \cap B$

1. $A \cap B$

1. $A \cap B$

2. $A \cap B$

2. $A \cap B$

3. $A \cap B$

4. $A \cap B$

1. $A \cap B$

2. $A \cap B$

2. $A \cap B$

2. $A \cap B$

3. $A \cap B$

4. $A \cap B$

1. $A \cap B$

1. $A \cap B$

2. $A \cap B$

3. $A \cap B$

4. $A \cap B$

4. $A \cap B$

5. $A \cap B$

6. $A \cap B$

7. $A \cap B$

8. $A \cap B$

9. $A \cap B$

1. $A \cap$

5. NÜB

6.
$$(A \cap B) \cap N$$

$$= \{-7, 5, -3, \frac{1}{2}, \frac{1}{2}, \frac{2}{3}, \dots\}$$

$$= \{1, 2, \frac{1}{4}, \frac{5}{4}, \frac{9}{4}\}$$

7. R \text{Q}

$$= \{1, 2, \frac{1}{4}, \frac{5}{4}, \frac{9}{4}\}$$

$$- All Nutwall Accimals from the sense of the se$$

B.B.

Set Builder Notation read page 69 and 70

$$A = \{3,7,10,13,16\}$$

$$n(A) = 5$$

$$\mathbf{A} = \{x \mid x \in Z, \ -2 \leqslant x \leqslant 4\}$$
 the set of all

reads "the set of all x such that x is an integer between -2 and 4, including -2 and 4."

Pick up WS #2

do A and B and C

ı

For the following sets:

- i Write down the meaning of the set builder notation.
- ii If possible, list the elements of A. iii Find n(A). iv Is A infinite?

$$A = \{x \mid x \in Z, -1 \le x < 7\}$$

i the set of all x values such that x is an element of the integers and it's between -1 and 6, inclusive

iv

For the following sets:

- i Write down the meaning of the set builder notation.
- ii If possible, list the elements of A. iii Find n(A). iv Is A infinite?

$$A = \{x \mid x \in Z, -1 \leqslant x < 7\}$$

i the set of all x such that x is an integer from -1 to 6.

$$A = \{-1, 0, 1, 2, 3, 4, 5, 6\}$$

$$8 = An$$
 isi

Write in set builder notation:

The set of all rational numbers between 2 and 3, inclusive.

$$\left\{ x \mid x \in \mathbb{Q}, 2 \leq x \leq 3 \right\}$$

$$\left\{ x \mid x \in \mathbb{Q}, 2 \leq x \leq 3 \right\}$$

Universal Sets

Complements of Sets

l

The symbol U is used to represent a universal set.

$$\mathbf{U} = \{ x \mid x \in N, \quad \mathbf{1} \leqslant x \leqslant \mathbf{10} \}$$

9.70

COMPLEMENTARY SETS

If the universal set is $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$ and $A = \{1, 3, 5, 7, 8\}$ then the

complement of A, denoted A' is $A' = \{2, 4, 6\}$.

The **complement** of A, denoted A'

is the set of all elements of U

which are not in A

If $U = \{x \mid x \in Z, \ 0 \le x \le 8\}, \ A = \{x \mid x \in Z, \ 2 \le x \le 7\}$ and $B = \{x \mid x \in \mathbb{Z}, 5 \le x \le 8\}$ list the elements of:

If $\{x \mid x \in Z, \ 2 \le x \le 7\}$ and $B = \{x \mid x \in \mathbb{Z}, 5 \le x \le 8\}$ list the elements of:

$$A = \{2, 5, 4, 5, 6, 6, 6, 6, 6, 6, 8\}$$

$$B = \{5, 6, 8\}$$

$$B' = \{0, 1, 2, 3, 4\}$$

$$A = \{2, 3, 4, 5, 6, 7\}$$

$$A' = \{0, 1, 8\}$$

$$B = \{5, 6, 8\}$$

$$A \cup B = \{2, 3, 4, 5, 6, 7, 8\}$$

Workshowt Assignment:

Sets Assignment #1 part worksheet/part textbook

October 23, 2018