

I
Go to the to check out the soft cover Mathematical Studies tartbok

On the way to the library use the HW Tally as necessary.

A farmer wishes to enclose a rectangular field using an existing fence for one of the four sides.

(a) Write an expression in terms of x and y that shows the total length of the new fence.
(b) The farmer has enough materials for 2500 metres of new fence. Show that

(c) $A(x)$ represents the area of the field in terms of x.
(i) Show that

$$
A(x)=2500 x-2 x^{2}
$$

(ii) Find $A^{\prime}(x)$.

$$
\begin{align*}
\text { Area } & =\text { length } x \text { width } \\
& =x \quad x \\
& =x(2500-2 x) \tag{2}
\end{align*}
$$

-

(1)
(iii) Hence or otherwise find the value of x that produces the maximum area of the field.

Calculate
(a) (i) the length of AC ;
(ii) the length of VC.

(b) the angle between VC and the base ABCD.

Sets, Venn Diagrams

H.H. textbook

Ch. 1, 4, 13

There will a combination of in class assignments and out of class assignments, occasionally no homework or shorter assignments.

Many of these, including in-class assignments, will get recorded on your new HW recording sheet as usual.

> A city has three newspapers A, B, and C. Of the adult population, 1% read none of these, 36% read $A, 40 \%$ read $B, 52 \%$ read $C, 8 \%$ read both A and $B, 11 \%$ read both B and C, and 13% read all three newspapers. What percentage of the adult population read:
a) Newspaper A only?
b) Newspaper B or newspaper C ?
c) Newspaper A or B or C ?

The work we will do in this unit will enable us to organize the this information and deal with questions like the newspaper problem.

but first we need to :

- Understand Types of Number Sets
- Use Set Vocabulary
- Write in Set Builder Notation

Pick Up W.S. \#1

Warm Up ------Sets of Numbers

(look at your Notation List at the end of your Formula Packet)
List the factors of 10 : \qquad

List the multiples of 3: \qquad
List the first six prime numbers: \qquad
List the first five numbers in the set, \mathbf{N} : \qquad

List a variety of numbers in the set, \mathbb{Z} : \qquad

List a variety of numbers in the set, \mathbf{Q} : \qquad
List a few numbers that are not in the set, \mathbb{R} : \qquad

Warm Up ------Sets of $\mathbb{N u m b e r s}$
(look at your Notation List at the end of your Formula Packet) Listhefeacororo of $10: 2,5,10$

List the multiples of 3 : $3,6,9,12,15, \ldots \ldots$ List the first six prime numbers: \qquad $2,3,5,7,11,13$ List the first five numbers in the set, \mathbb{N} : \qquad List a variety of numbers in the set, \mathbb{Z} : \qquad Lota variety o fuumbers in the set, $Q: \begin{array}{llll}\frac{2}{3} & -0.23 & 6 & 2 \frac{1}{3}\end{array}$ List a few numbers that are not in the set, $\mathbb{R}: \underline{\sqrt{-6}} \quad 3 i \quad 5-4 i$ a number in \mathbb{R} but not in any other above ??

warm Up:

Quietly read through HH

$$
\begin{gathered}
\text { pp. } 18-19 \\
\text { up to example } 1
\end{gathered}
$$

then answer as many questions as

$$
\begin{aligned}
& \text { you can on the back side } \\
& \text { "What Are Sets?" }
\end{aligned}
$$

6inhat are sets?

Definitions

In the table below, define the terms on the left hand side

Set	
Subset	
Union of two sets	
Complement of a set	
Intersection of two sets	
Element	

What are sets?

Definitions

In the table below, define the terms on the left hand side

set	A collection of numbers or objects
subset	A portion of a larger set
Union of two sets	A list of all elements of the combined sets
complement of a set	The elements Dot in the set.
Intersection of two sets	The elements that belong to both sets
Element	A member

And now state what is meant by each of these symbols in the context of set notation

u	first 5 set or $2^{\text {nd }}$ set or both
n	first set AnD $2^{\text {nd }}$ set
ϵ	is an element of
c	proper subset

Examples

Give an example of two sets of people that would have no intersection.

Give another where you would expect an intersection.

Now, a third where one would be a subset of another.

If $A \subseteq B$, and $A \neq B$, then A is said to be a proper subset of B and can also be denoted by $A \subset B$.

For example $\{1,2\} \subseteq\{1,2,3\}$.

$$
\text { Also }\{1,2\} \subset\{1,2,3\} .
$$

Let's make a union of sets A and B.
$A \cup B$
$A=\{4,7,10,13\}+B=\{-1,0,1,2\}$
$\{-1,0,1,2,4,7,10,13\}$

When giving a list showing the elements of a set, use curly brackets:

$$
\text { e.g. } A=\{3,6,9,12\}
$$

$\underset{\text { Check }}{\underset{\text { earning }}{ }}$

Consider the sets $A=\{2,3,5,7\}$ and $B=\{2,4,6,8\}$. Which of the following are true?
$3 \in A$?
$4 \in A$?
$\{5\} \subseteq A ?$
$\{5\} \subset A$?

Go back to the front side

\square

5. $\mathbb{N}^{\varepsilon^{a l l}} \mathrm{~B}$
Natural $\left\{-5,0, \frac{1}{2}, 1,23, \ldots.\right\}$
6. $(A \cap B) \sqrt{\sim}_{n}^{N}$ And

$$
\begin{gathered}
=\left\{-7,5,-3, \frac{1}{2}, 1,2,4,5,64\right\} \quad\{0,1,2,3, \ldots\} \\
=\{1,2,4,5,6,9\}
\end{gathered}
$$

7. $\mathrm{R} \cap \mathrm{Q}$ Rational

Real - All natural
-All integers -All integers /fractions

$$
\{\mathbb{Q}\}
$$

$$
\mathbf{A}=\{1,-3,5,-7,9\} \quad \mathbf{B}=\left\{\frac{1}{2}, 2,4,-5,5,6\right\}
$$

B.B.
Set Bulder Notation $->\tan$ on

$$
\begin{aligned}
& A=\{3,7,10,13,16\} \\
& n(A)=5
\end{aligned}
$$

$$
A=\{\mid \quad\}
$$

\[

\]

reads "the set of all x such that x is an integer between -2 and 4 , including -2 and 4 ."

Pick up WS \#2
do A and B and C

A
Finite or infinite?

$$
\begin{aligned}
& \{x \mid x \in \mathbb{Q}, 4 \leq x \leq 8\} \text { in } \quad \text { infinite } \\
& \left\{x \mid x \in Z_{T,}, 4 \leq x \leq 8\right\} \text { finite finite }
\end{aligned}
$$

For the following sets:
i Write down the meaning of the set builder notation.
ii If possible, list the elements of A . iii Find $n(\mathrm{~A})$. iv Is A infinite?

$$
\mathrm{A}=\{x \mid x \in Z, \quad-1 \leqslant x<7\}
$$

i the set of all x values such that x is an element of the integers and it's between -1 and 6, inclusive ii $\left\{-1^{0}, 2,3, \ldots \ldots . .5,6\right\}$
ii)

$$
n(A)=8
$$

iv

B
For the following sets:
i Write down the meaning of the set builder notation.
ii If possible, list the elements of A . iii Find $n(\mathrm{~A})$. iv Is A infinite?

$$
\mathrm{A}=\{x \mid x \in Z, \quad-1 \leqslant x<7\}
$$

i the set of all x such that x is an integer from -1 to 6 .
ii $A=\{-1,0,1,2,3,4,5,6\}$
iii $n A=8$
iv finite
c

Write in set builder notation:

The set of all rational numbers between 2 and 3 , inclusive.

$$
\begin{aligned}
& \{x \mid x \in Q, 2 \leq x \leq 3 \\
& \{x \mid x \in Q, 2 \leq x \leq 3\}
\end{aligned}
$$

The symbol U is used to represent a universal set.

$$
\mathrm{U}=\{x \mid x \in N, \quad \mathbf{1} \leqslant x \leqslant \mathbb{1} \mathbf{O}\}
$$

p. 70

COMPLEMENTARY SETS

If the universal set is $U=\{1,2,3,4,5,6,7,8\}$
and $\mathrm{A}=\{1,3,5,7,8\}$ then the
complement of A , denoted A^{\prime} is $\mathrm{A}^{\prime}=\{2,4,6\}$.
The complement of A, denoted A^{\prime}
is the set of all elements of U
which are not in A

If $\mathrm{U}=\{x \mid x \in Z, 0 \leqslant x \leqslant 8\}, \mathrm{A}=\{x \mid x \in Z, 2 \leqslant x \leqslant 7\}$ and $\mathrm{B}=\{x \mid x \in Z, 5 \leqslant x \leqslant 8\}$ list the elements of:

A $2,3,4 \ldots \ldots 7$

$$
\begin{aligned}
& A \cap B=5,6,7 \\
& A \cup B=2,3,4,5,6,7,8
\end{aligned}
$$

$A^{\prime} 0,1,8$
$B 5,6,7,8$
B) $0,1,3,4$
$A \cap B^{\prime}$
$2,3,4$

D

If $\mathrm{U}=\{x \mid x \in Z, 0 \leqslant x \leqslant 8\}, \mathrm{A}=\{x \mid x \in Z, 2 \leqslant x \leqslant 7\}$ and $\mathrm{B}=\{x \mid x \in Z, 5 \leqslant x \leqslant 8\} \quad$ list the elements of:

$$
\begin{array}{ll}
A=\{2,3,4,5,6,7\} & A \cap B=\{5,6,7\} \\
A^{\prime}=\{0,1,8\} & A \cup B=\{2,3,4,5,6, \\
B=\{5,6,8\} & A \cap B^{\prime}=\{2,3,4\}
\end{array}
$$

workshoet Assignment:

Sets Assignment \#1 part worksheet/part textbook

