## Do the Warm Up

front side only **
also pick up the ch. 2 test info sheet
(1) Factor $n^{2}-49$ (hint ike difference of squares) $=(n+7)(n-7)$ Factor $16 x^{2}-25=(4 x+5)(4 x-5)$
(2) What is the parent function of $y=(x-3)^{2}+6$

$$
y=x^{2}
$$

$$
\begin{array}{llllll}
" & " & " & " & " y=5 \sqrt{x+1}-7 & y=\sqrt{x} \\
" & " & " & " & " y=2\left(\frac{1}{x+10}\right)-18 & y=\frac{1}{x}
\end{array}
$$

(3) With each of the parent functions below, write a transformed function that has a vertical stretch of $\frac{u p}{7}, k$ horizontal shift left 20 , and a vertical shift down ' 11 .
a) Parent

$$
y=|(x)|
$$

b) $y=\frac{1}{(x)}$
c) $y=3^{(x)}$

| Transformation |
| :--- |
| $y=7 \mid-11$ |



$$
y=7(3)^{x+20}-11
$$

(4) The general form of a transformation of $y=x^{2}$ is $\bar{y}=a(x-h)^{2}+k$. What is the general form for
a) $y=\sqrt{x}$
b) $y=\frac{1}{x}$

$$
\begin{aligned}
& y=a \sqrt{x-h}+k \\
& y=a\left(\frac{1}{x-h}\right)+k
\end{aligned}
$$

Aim Analyze Transformations of the 5 Parent Functions
and previous functions

| brainstorm <br> all of the function <br> types you can think <br> of | lines <br> parabolas <br> hyperbolas reciprocal' <br> cubits <br> square root <br> exponential <br> absolute value |
| :---: | :---: |

Function Familiarity

$$
\begin{array}{r}
\text { recognition test !!! } \\
\text { Mot a real test }
\end{array}
$$

I give you the function, you sketch
$\square$

$$
y=|x|
$$

$$
\Psi
$$

$$
y=\sqrt{x}
$$



$$
y=-\sqrt{x}
$$



$$
\begin{aligned}
& y=\frac{1}{x} \\
& y=x^{3} \\
& y=x
\end{aligned}
$$





$$
\begin{aligned}
& y=x+2 \\
& y=x-5
\end{aligned}
$$


back side of Warm Up
1 Identify the parent function shown on the graph
2. Find the locator point of the graph shown.
3. Write the function that matches the trans formation shown.


$$
\begin{equation*}
y=(x)^{2}-5 \tag{2}
\end{equation*}
$$

a. $\square^{-x 2}$
b. $y_{y}=x^{2}-5 u$
c.



e.
1.



$$
\begin{aligned}
y & =- \\
y & =3(x-2) \\
y & =3 x-6
\end{aligned}
$$



let's go back and look at the Significance of (h,k)

The locator point on the graph is the point $(h, k)$ for almost all functions.

$$
y=-(x-3)^{2}+6
$$



Parabola

$$
\begin{gathered}
y=x^{2} \\
y=a(x-h)^{2}+k
\end{gathered}
$$

The locator point ( h, k ) is at the vertex of a parabola



Hyperbola

$$
\begin{aligned}
& y=\frac{1}{x} \\
& y=\frac{a}{x-h}+k
\end{aligned}
$$

The locator point ( $\mathrm{h}, \mathrm{k}$ ) is in between the two branches.

| Parent | $y=$ |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |


| $\frac{\text { Parent }}{y=\|x\|}$ | $\frac{\text { General (with hook) }}{y=a\|x-h\|+k}$ |
| :--- | :--- |
| $y=5^{x}$ | $y=a(5)^{x-h}+k$ |

$y=2^{x}-3$
$y=2^{x}$
$y=a \cdot 2^{a-h}+k$
The locator point $(h, k)$
is ?????

## Two Tough Problems

(1) Complete the square to convert $y=3 x^{2}+2 x+10$ to graphing

$$
\begin{aligned}
& \frac{y}{3}=x^{2}+\frac{2}{3} x+\frac{10}{3} \\
& \frac{y}{3}+\frac{1}{9}= \\
& \frac{y^{0}}{3}+\frac{1}{9}=\left(x+\frac{1}{3}\right)^{2}+\frac{10}{3} \\
& \begin{array}{c}
\text { multiply by } 9 \\
3 y+1=9\left(x+\frac{1}{3}\right)^{2}+30
\end{array} \\
& \left.\left(-\frac{1}{3}\right)^{\frac{29}{3}}\right)
\end{aligned}
$$

$$
\frac{1}{3} x \cdot \frac{1}{3} x=\frac{1}{\pi} x^{2}
$$


$2-107-109,110 a, 111,113,119$
The Chapter 2 Eest is Friday

