h October 15, 2018

Do the Warm Up

front side only .

also pech up the cheztest into sheet

- (1) Factor $n^2 49$ (HINT) We difference of Squares) = (n+7)(n-7)Factor $16x^2 - 25 = (4x + 5)(4x - 5)$

- (3) With each of the parent functions below, write a transformed function that has a vertical stretch of 7, a horizontal shift left 20, and a vertical shift down 11.
 - a) $\frac{Parent}{y = |x|}$
 - b) y = (x)
 - c) y = 3(x)

 $y = \frac{1}{3} + \frac{1}{3} - \frac{1}{3}$ $y = \frac{1}{3} + \frac{1}{3} - \frac{1}{3}$

The general form of a transformation of $y=x^2$ is $y=a(x-h)^2+k$, what is the general form
for a) $y=\sqrt{x}$ $y=\sqrt{x}$ $y=\sqrt{x}$ $y=\sqrt{x}$ $y=\sqrt{x}$

brainstorm

all of the function types you can think of

lines

parabolas

y= 1/x hyperbolas reciprocal

cubics

square root

exponentials

absolute value

Function Familiarity
recognition test

L NOT a real test

I give you the function, you sketch

$$y = \{x\}$$

$$y = \sqrt{x}$$

$$u = -\sqrt{x}$$

$$y = \frac{1}{x}$$

$$y = x^{3}$$

$$y = x + 2$$

$$y = x - 5$$

$$y = 4^{x}$$

$$y = 2^{x}$$

$$y = 3^{x}$$

$$y = 5^{x}$$

$$y = (x+17)$$

$$y = x^{3}$$

$$y = x^{3}$$

back side of Warm UP

- I Identify the parent function shown on the graph
- 2. Find the locator point of the graph shown.
- 3. Write the function that matches the transformation shown

let's go back and look at the

Significance of (h,k)

The locator point on the graph is the point (h,k) for almost all functions. h October 15, 2018

Parabola

$$\sqrt{1 - x^2}$$

$$y = \alpha (x-h)^{2} + k$$

The locator point (h, k) is at the vertex of a parabola

Cubic

$$y = x^3$$

$$y = x^3$$

$$y = a(x-h) + K$$

The locator point (h, k) is at the inflection point.

Hyperbola

$$\lambda = \frac{\times}{1}$$

$$y = \frac{\alpha}{x-h} + k$$

The locator point (h, k) is in between the two branches.

General (with h,k)

4=

$$y = |x|$$

$$y = a |x-h| + k$$

$$y = 5^{\times}$$

$$y = \alpha(5) + k$$

Exponential

$$\gamma = 2^{\times}$$

$$y = \alpha \cdot 2 + k$$

The locator point (h, k) is ?????

Two Tough Problems

(1) Complete the square to convert

$$y = 3x^2 + 2x + 10$$
 to graphing

 $\frac{y}{3} = x^2 + \frac{2}{3}x + \frac{10}{3}$
 $\frac{y}{3} = x^2 + \frac{2}{3}x + \frac{10}{3}$
 $\frac{y}{3} = \frac{9(x+3)^2 + 29}{3}x + \frac{10}{3}$
 $\frac{y}{3} + \frac{1}{9} = \frac{(x+\frac{1}{3})^2 + 29}{3}x + \frac{10}{3}$
 $\frac{y}{3} + \frac{1}{9} = \frac{(x+\frac{1}{3})^2 + 29}{3}x + \frac{10}{3}x + \frac{1$

$$\frac{1}{3}x \cdot \frac{1}{3}x = \frac{1}{7}x^2$$

h October 15, 2018

2-107-109, 110a, 111, 113, 119

The Chapter 2 test is Friday

