Be sure to pull out your IB FORmula sheet.
 happy Halloween

QUESTIONS ON Homework

Start the warm up.

The table below shows the number of left and right handed tennis players in a sample of 50 males and females.

	Left handed	Right handed	Total
Male	3	29	32
Female	2	16	18
Total	5	45	50

If a tennis player was selected at random from the group, find the probability that the player is
(a) male and left handed;
(b) right handed;
(c) right handed, given that the player selected is female.

1. The table below shows the number of left and right handed tennis prayers in a sample or Jo males and females.

	Left handed	Right handed	Total
Male	3	29	32
Female	2	16	18
Total	5	45	50

If a tennis player was selected at random from the group, find the probability that the player is
(a) male and left handed; $3 / 50$
(b) right handed; $45 / 50$
(c) right handed given that the player selected is female.
(a) Represent the above information on a Venn Diagram.
(b) How many children drank none of the above?
(c) A child is chosen at random. Find the probability that the child drank
(i) coffee;
(ii) water or fruit juice but not coffee;
(iii) no fruit juice, given that the child did drink water.
(d) Two children are chosen at random. Find the probability that both children drank all three choices.

Represent the above information on a Venn Diagram. How many children drank none of the above?

A child is chosen at random. Find the probability that the child drank (i) coffee;

(ii) water or fruit juice but not coffee;

(iii) no fruit juice, given that the child did drink water.

Two children are chosen at random. Find the probability that both children drank all three choices.

$$
P\left(\begin{array}{c}
\text { first drench } \\
\text { all } 3
\end{array} \text { and all } \begin{array}{c}
\text { ned dr }
\end{array}\right)=\frac{5}{100} \cdot \frac{4}{99}=0.002
$$

Represent the above information on a Venn Diagram. How many children drank none of the above?

A child is chosengtrandom. Find the probability that the child drank (i) coffee; 100
(ii) water or fruit juice but not coffee; $\frac{27}{100}$
(iii) no fruit juice, given that the child did drink water.

$$
\frac{8}{31}
$$

Two children are chosen at random. Find the probability that both children drank all three choices.

$$
\frac{5}{100} \cdot \frac{4}{99}=\frac{20}{9900}=\frac{2}{990}=\frac{1}{495}
$$

In a class of 40 students, 19 play tennis, 20 play netball and 8 play neither of these sports. A student is randomly chosen from the class. Determine the probability that the student:

a	plays tennis	b	does not play netball
c	plays at least one of the sports	d	plays one and only one of the sports
e	plays netball, but not tennis	f	plays tennis knowing he/she plays netball.

PO 474 \#5

po478 A cook selects an egg at random from a carton containing
\# 6 ordinary eggs and 3 double-yolk eggs. She cracks the egg into a bowl and sees whether it has two yolks or not. She then selects another egg at random from the carton and checks it.
Let S represent "a single yolk egg" and D represent "a double yolk egg".
a Draw a tree diagram to illustrate this sampling process.
b What is the probability that both eggs had two yolks?
c What is the probability that both eggs had only one yolk?

pH82-3

3 In a survey at an alpine resort, people were asked whether they liked skiing (S) or snowboarding (B). Use the Venn diagram to determine the number of people:
a in the survey b who liked both activities
c who liked neither activity

d who liked exactly one of the activities.

In the Venn diagram, U is the set of all members of a gymnastic club.

The members indicate their liking for apples (A), bananas (B) and oranges (O). There are 60 members in the club.
a Find the value of k.
, If a randomly chosen member is asked about their preferences for this fruit, what is the probability that the member likes:

i	only bananas	ii	bananas and oranges
iii	none of these fruit	iv	at least one of these fruits
v	all of the fruits	vi	apples and bananas, but not oranges
vii	oranges or bananas	vii	exactly one of the three varieties of fruit

1. Look at the last of the probability laws. You will be given a paper to take notes on.

We will also point out the laws on the IB formula sheet.
2. Do some related problems in class.

Today

1. Look at the last of the probability laws. You will be given a paper to take notes on.

We will also point out the laws on the IB formula sheet.
2. Do some related problems in class.

We already know:

$$
\begin{aligned}
& \cup \text { means "or" } \\
& \cap \text { means "and" } \\
& P(A \cup B)= \\
&=P(A \circ r B) \\
& \begin{aligned}
P(A \cap B) & = \\
& =P(\text { And } B)
\end{aligned}
\end{aligned}
$$

The Law For:

$$
\begin{aligned}
& \text { Indendent Events: } \\
& \text { (ff one event does not affect the other) } \\
& P(A \cap B)=P(A) \cdot P(B)
\end{aligned}
$$

find the

Law of Combined Events on your IB formula sheet

The Law for Combined Events:
$P(A$ orB $)=P(A)+P(B)-P(A$ andB $)$

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Unless, of course, the events are Mutually Exclusive from each other.

That is....Events A and B have no chance of overlap.

For example:
A: The child has blue eyes
B: The child has brown eyes.

In this case, the Combined Events Law simplifies to:

$$
P(A \cup B)=P(A)+P(B)
$$

$$
A b s+r a c x
$$

back of the War Mp

Example 2

A box of chocolates contains 6 with mint filling (M) and 12 with no filling (N).

Find
i. $\quad P(M)=\frac{6}{18}$
ii. $P(N)=\frac{12}{18}$
iii. $P(H \in N)=0$
iv. $P(M \cup N)=1$

Conditional Probability

$A \mid B$ is used to represent that A occurs knowing that B has occurred.
given
that

$$
\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)<} \quad \begin{aligned}
& \text { reduced } \\
& \text { sample } \\
& \text { space }
\end{aligned}
$$

An example on the next page will show how our last and final probability law works.

Example 3

In a class of 25 students, 14 like Pizza and 16 like iced coffee. One student likes neither and 6 like both. One student is randomly selected. What is the probability that the student:
a. likes pizza ?
b. likes pizza given that she likes iced coffee.

$$
\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}
$$

Example 3

In a class of 25 students, 14 like Pizza and 16 like iced coffee. One student likes neither and 6 like both. One student is randomly selected. What is the probability that the student:

a. likes pizza?
that she

$$
\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}=\frac{6}{16}
$$

GROUP Problem

Events A and B have the following probabilities:

$$
p(A)=0.4 \quad p(B)=0.5 \quad p(A \cup B)=0.7
$$

a. Calculate $p(A \cap B)=\bigcirc .2$
b. Represent this information on a Venn diagram

$$
\therefore P(A \cap B)=2
$$

c. Find $P\left(A^{\prime} \cap B^{\prime}\right)=0.3$
d. Are the events A and B independent ?

Independent if $P(A \cap B)=P(A) \cdot P(B)$

$$
.2=(0.4)(.5)
$$

$$
\begin{gathered}
P(A \cup B)=P(A)+P(B)-P(A D P) \\
.7=.4 \pm .5-P(A \cap) \\
.7=.9-P(A \cap E)
\end{gathered}
$$

$.2=.2$

There is not a lot of time to practice these most recent topics, so don't rush through today's assignment.

$$
B_{----} B_{----}
$$

US States Renamed

For Countries With Similar GDPs

SVP Assignment 7
 p. 486 2, 6, 8, 11
 p. 490........ 1-3

