
(1) Does $f(x)=\frac{3 x-1}{x+8}$ have a vertical asymptote? If so what is its
(1) Does $f(x) \quad x=-8$ equation?

Does $f(x)=\frac{3 x-1}{x+8}$ have a horizontal asymptote? if so, what is hint: to find horizontal abymptas "1
you can play the "Billion Dollar tame"] $\frac{2 x-1}{x+8}=\frac{3 B}{B}$

(2) Is $f(x)=\frac{5 n-20}{n-4}$ always equal to 5? If so, why not?

$$
\frac{5(n-4)}{n-4}=5
$$

The Big Kahuna
simplify $\frac{12 x-18}{x-3} \div \frac{3 x^{2}-9 x-12}{6-2 x}$

$$
\begin{aligned}
& \frac{12 x-18}{x+3} \div \frac{3 x^{2}-9 x-12}{6-2 x} \\
& \begin{aligned}
& \frac{3(x-4)(x+1)}{x-3} \\
& \div \frac{3\left(x^{2}-3 x-4\right)}{2(3-x)}
\end{aligned} \\
& -\frac{4(2 x-3)}{(x-4)(x+1)} \\
& 2 \frac{6(2 x-3)}{x-3} \cdot \frac{\frac{-2(x-3)}{x(x-4)(x+1)} \rightarrow \frac{-4(2 x-3)}{(x-4)(x+1)}, ~}{x(x)}
\end{aligned}
$$

(4) Solve the Absolute Value equation

$$
\begin{gathered}
\frac{|2 x-3|}{9}=2 \\
|2 x-3|=18 \\
2 x-3=18 \\
2 x=21 \\
x=\frac{31}{2}
\end{gathered} \begin{array}{r}
2 x-3=-18 \\
+3=-15 \\
2 x=-\frac{15}{2}
\end{array}
$$

Ethods and Meanings

Math Notes

Rewriting Rational Expressions

To simplify a rational expression, both the numerator and denominator must be written in factored form. Then look for factors that make a "Giant One"(a form of the number 1) and simplify. Study Examples 1 and 2 below.

Example 1: $\frac{x^{2}+5 x+4}{x^{2}+x-12}=\frac{(x+4)(x+1)}{(x+4)(x-3)}=1 \cdot \frac{x+1}{x-3}=\frac{x+1}{x-3}$ for $x \neq-4$ or 3
Example 2: $\frac{2 x-7}{2 x^{2}+3 x-35}=\frac{(2 x-7)(1)}{(2 x-7)(x+5)}=1 \cdot \frac{1}{x+5}=\frac{1}{x+5}$ for $x \neq-5$ or $\frac{7}{2}$

Just as you can multiply and divide fractions, you can multiply and divide rational expressions.
Example 3: Multiply $\frac{x^{2}+6 x}{(x+6)^{2}} \cdot \frac{x^{2}+7 x+6}{x^{2}-1}$ and symplify for $x \neq-6$ or 1 .
After factoring, this expression becomes: $\frac{x(x+6)}{(x+6)(x+6)} \cdot \frac{(x+1)(x+6)}{(x+1)(x-1)}$
After multiplying, reorder the factors: $\frac{(x+6)}{(x+6)} \cdot \frac{(x+6)}{(x+6)} \cdot \frac{x}{(x-1)} \cdot \frac{(x+1)}{(x+1)}$
Since $\frac{(x+6)}{(x+6)}=1$ and $\frac{(x+1)}{(x+1)}=1$, Simplify: $1 \cdot 1 \frac{x}{(x-1)} \cdot 1 \Rightarrow \frac{x}{(x-1)}$

Example 4: Divide $\frac{x^{2}-4 x-5}{x^{2}-4 x+4} \div \frac{x^{2}-2 x-15}{x^{2}+4 x-12}$ and simplify for $x \neq 2,5,-3$, or -6 .
First, change to a multiplication expression: $\frac{x^{2}-4 x-5}{x^{2}-4 x+4} \cdot \frac{x^{2}+4 x-12}{x^{2}-2 x-15}$
Then factor each expression: $\frac{(x-5)(x+1)}{(x-2)(x-2)} \cdot \frac{(x-2)(x+6)}{(x-5)(x+3)}$
After multiplying, reorder the factors: $\frac{(x-5)}{(x-5)} \cdot \frac{(x-2)}{(x-2)} \cdot \frac{(x+1)}{(x-2)} \cdot \frac{(x+6)}{(x+3)}$
Since $\frac{(x-5)}{(x-5)}=1$ and $\frac{(x-2)}{(x-2)}=1$, simplify to get: $\frac{(x+1)(x+6)}{(x-2)(x+3)} \Rightarrow \frac{x^{2}+7 x+6}{x^{2}+x-6}$

$$
y=a b^{x}
$$

$$
y=a(3)^{x}
$$

$$
72=a(3)^{x}
$$

$$
72=a(3)^{15}
$$

cq bologna sandwich bacteria currently 72 million triples every 24 hours
15 days ago, there was \qquad bacteria function

$$
y=a b^{x}
$$

$$
\text { low as } 100 \text { ? }
$$

$$
\begin{aligned}
96 c] \frac{8}{k} & =\frac{14}{k+3} \\
\overparen{\delta}(k+3) & =14 k
\end{aligned}
$$

90 a

$$
\begin{aligned}
& a \cdot \frac{x-7}{9(2 x-1)} \div \frac{(x+5)(x-7)}{6 x(x+5)} \\
& \frac{x-7}{9(2 x-1)} \div \frac{6 x}{x-7}
\end{aligned}
$$

90 $\frac{6 x^{2}-x-1}{3 x^{2}+2 x+8} \cdot \frac{x^{2}+4 x-32}{2 x^{2}+7 x-4}$

90

$$
\begin{aligned}
& \text { b. } \frac{6 x^{2}-x-1}{3 x^{2}+2 x+8} \cdot \frac{x^{2}+4 x-32}{2 x^{2}+7 x-4} \\
& \begin{array}{r}
x-8 \\
\times \left\lvert\, \frac{x^{2} 9 x}{4 x+32}\right. \\
4
\end{array} \\
& \frac{(2 x-1)(3 x+1)}{\left(3 x^{2}+2 x+8\right.} \cdot \frac{(x+8)(x-4)}{(x+4)(2 x-1)} \quad \begin{array}{r}
x-32 x \\
2 x-6 x \\
-4 x+8 x
\end{array}
\end{aligned}
$$

91 a $\frac{(x+4)^{2}}{(x+4)(x-2)}=$

$$
91 b \frac{8(x+2)^{3}(x-3)^{3}}{4(x+2)^{2}(x-3)^{5}}
$$

$$
93 b \quad \begin{aligned}
& 3 x-2 y=30 \\
& 2 x+3 y=-19
\end{aligned}
$$

$$
72=a(3)^{15}
$$

$$
96 a \cdot \frac{m}{6}=\frac{m+1}{5} \quad \text { c. } \frac{3 x-5}{2}=\frac{4 x+1}{4}
$$

from this point on in this course, you may assume that all values of x that would make a denominator zero are excluded

Learning Targeł

Add \& Subtract \dagger

Expressions
a different process than + or -

1. Simplify individual fractions first.
2. Condense to a single fraction, getting a common denominator if needed.
3. Simplify further.
4. Simplify individual fractions first.
5. Condense to a single fraction, getting a common denominator if needed.
6. Simplify further.
helps to
have a
color pen of
some type.

1

$$
\begin{aligned}
& \frac{m-3 n}{6 m^{3} n}-\frac{m+3 n}{6 m^{3} n} \\
& \frac{m-3 n-(m+3 n)}{6 m^{3} n} \rightarrow \frac{m(-3 n+m-3 n}{6 m^{3} n} \rightarrow \frac{-6 n n}{6 m^{3} n}
\end{aligned}
$$

$$
\frac{1(5)}{3(5)}+\frac{2(3)}{5(3)} \rightarrow \frac{5+6}{15} \rightarrow \frac{11}{15}
$$

$$
\frac{-5 x^{2}+5 x+24}{4(x-1)}
$$

$$
\begin{aligned}
& \frac{(x+4(x)-(2)(x-1)}{2 x(x)}-\frac{x(x+4)-2(x-1)}{2 x^{2}} \\
& \frac{x^{2}+4 x-2 x+2}{2 x^{2}} \rightarrow \frac{x^{2}+2 x+2}{2 x^{2}}
\end{aligned}
$$

$\mathrm{Brain}_{\mathrm{Break!}}$

