PiCK QP the QUESTIONS on
(1) $\frac{-9 x^{3}}{218 x^{2}}=\square-\frac{x}{2}$
(2) $\frac{4 x x^{x} y}{78 x y}=\frac{4 x}{7}$

$$
\frac{4}{7} x
$$

(3) $\frac{-76 x^{2} y 1}{10100 x y^{2} y^{2}}=-\frac{7 x}{10 y^{2}}$
(4) $\frac{13(x-5)(5 x+1)}{5^{15(x-5)}}=\frac{5 x+1}{5}$
(5) $\frac{2 x-4}{x-2}=\frac{2(x-2)^{1}}{x i}=2$
(6) $\frac{x^{2}+4 x}{2 x+8}=\frac{x(x+4)}{2(x+4)}=\frac{x}{2}$
(7) $\frac{n^{2}-16}{4 n-12}=\frac{(n+4)(n-4)}{4(n-3)}$
carit
be simplified
(8) $\frac{a-b}{b-a}=\frac{(a-b) 1}{7(a-b)}=\frac{1}{-1}=-1$
$\frac{7-1}{1-7}$

$$
\begin{aligned}
& 3-10 \quad 10-3 \\
& -(10-3)
\end{aligned}
$$

(a) Analyzethe function

$$
y=\frac{(2 x-4)}{[(x-4)(x-2)]}
$$

a) sketch the graph - include holes (if any)

- include dashed lines for asymptotes (if any

b) Describe all discontinuities

VA at $x=4$ $H A$ al $y=0$
c) Domain:
$-\infty<x<\infty, x \neq 2, x \neq 4$
d) range:

Questions on HW?

78
(a)

$$
\frac{x^{2}-8 x+16}{3 x^{2}-10 x-8}=\frac{(x)}{(x)}
$$

78
(a)

$$
\frac{x^{2}-8 x+16}{3 x^{2}-10 x-8}=\frac{(x-4)(x-4)}{(3 x+2)(x-6)}
$$

(b) $\frac{10 x+25}{2 x^{2}-x-15}=\frac{5(2 x+5)}{(x+5)(x-3)}=\frac{5}{x-3}$

(c) | $\frac{(k-4)(2 k+1)}{5(2 k+1)} \div \frac{(k-3)(k-4)}{10(k-3)}$ |
| :--- |
| $\frac{k-4}{5} \div \frac{k-4}{10}$ |
| $\frac{k-4}{5} \cdot \frac{10}{k-4}=\frac{10}{5}$ |

79 4x+3=3x+3
(a)
$x=0$
so 1 solution
(b) $\begin{aligned} 3(x-4)-x & =5+2 x \\ 3 x-12-x & =5+2 x\end{aligned}$
$\underset{-2 x}{2 x-12=5+2 x}+2 x$
$-12=5$
false statement
so no solutions

81

$$
\begin{aligned}
5+3 x & <5 \\
-5 & -5 \\
3 x & <0
\end{aligned}
$$

(b)

$$
\begin{aligned}
&-3 x \geq 8-x \\
&+3 x+3 x \\
& \geq
\end{aligned}
$$

Alternative method

$$
\begin{array}{cc}
-3 x \geq & 8-x \\
+x & +x
\end{array}
$$

$$
-2 x \geq 8
$$

$$
\begin{aligned}
& y=(x+2)(x+2)(x+2)+4 \\
& y=(\quad)(x+2)+4
\end{aligned}
$$

the rest can be seen in the solutions

$$
\begin{aligned}
& \text { - RECCNT HW QUESTIONS } \\
& \text { - RECENT CLASS "STUFF" } \\
& \text { - SOMEHHNGS FROM TOOAYS LESSON }
\end{aligned}
$$

use your understanding of fractions to:

Multiply and Divide
 Expressions
(ALWAYS factor first!)

Rational Expression

- Rational Expression
will look like:

$$
\frac{2 x-5}{x+3} \cdot \frac{3(x+3)}{2 x+10}
$$

which means:

$$
\frac{3(2 x-5)(x+3)}{(x+3)(2 x+10)}
$$

do 3-87
a, b, c, and d
for now

Write down restrictions on a, b, and c only

a. $\frac{4 x+3}{x-5} \cdot \frac{x-5}{x+3}$
b. $\frac{x+2}{9 x-1} \div \frac{2 x+1}{9 x-1}$
$\frac{x+2}{9 x-1} \cdot \frac{9 x-1}{2 x+1}$

$$
\begin{array}{r}
9 x-1=0 \\
9 x=1
\end{array}
$$

$$
\begin{array}{|}
\frac{4 x+3}{x+3} \\
\sqrt{ }
\end{array}
$$

$$
\begin{aligned}
& x \neq-3 \\
& x \neq 5
\end{aligned}
$$

$$
\frac{x+2}{2 x+1} \int_{x=\frac{1}{9}}^{x=-\frac{1}{2}}
$$

c. $\frac{2 m+3}{3 m-2} \cdot \frac{7+4 m}{3+2 m} \leftrightarrows \frac{7+4 m}{3 m-2}$

$$
\begin{aligned}
& m \neq \frac{2}{3} \\
& m=-\frac{3}{2}
\end{aligned}
$$

now (©) and (f)
e. $\frac{15 x^{3}}{3 y} \div \frac{10 x^{2} y}{4 y^{2}} \rightarrow \frac{15 x^{3} x^{2}+4 y^{2} y_{1} y_{1}}{13 y y_{1}}$

(f) $\frac{(5 x-2)(3 x+1)}{(2 x-3)^{2}} \div \frac{(5 x-2)(x-4)}{(x-4)(2 x-3)}$

No canceling factors if:

$$
\begin{aligned}
& \frac{(5 x-2)(3 x+1)}{(2 x-3)^{2}} \cdot \frac{(x-4)(2 x-3)}{(5 x-2)(x-4)} \\
& =\frac{3 x+1}{2 x-3}
\end{aligned}
$$

\square
a) Write down the problem
b) Factor everything first
c) Then look for factors to cancel.

$$
\frac{n^{2}-25}{10 n+20} \cdot \frac{2 n^{2}-8}{n^{2}+7 n+10}
$$

$$
\begin{aligned}
& \text { lastly } \\
& \frac{12 x-18}{x-3} \div \frac{3 x^{2}-9 x-12}{6-2 x}
\end{aligned}
$$

do all factoring before anything else

$$
\begin{aligned}
& \frac{12 x-18}{x+3} \div \frac{3 x^{2}-9 x-12}{6-2 x} \\
& \\
& \frac{6(2 x-3)}{x-3} \div \frac{3\left(x^{2}-3 x-4\right)}{2(3-x)} \\
& \frac{6(2 x-3)}{x-3} \div \frac{2(3-x)}{3(x-4)(x+1)}
\end{aligned}
$$

$$
\left[\begin{array}{c}
\frac{2 x-18}{x+3} \div \frac{3 x^{2}-9 x-12}{6-2 x} \\
\vdots \\
\frac{2(2 x-3)}{x-3} \div \frac{3\left(x^{2}-3 x-4\right)}{2(3-x)} \\
\\
\frac{6(2 x-3)}{x-3} \div \frac{2(3-x)}{3(x-4)(x+1)}
\end{array}\right]
$$

Assignment:

$$
3 \text {.... } 90 \text { to } 94,96
$$

