

Pick it up.
Do both sides.
and pick up New Recording Sheet.

Handout Arithmetic Sequences
\square (1) (2)
zero term format $t(n)=-3+10 n$
first term format $t(n)=7+10(n-1)$

$$
\begin{aligned}
& t(50)=-3+10(50) \quad 7+10(4-1) \\
& t_{50}=497
\end{aligned}
$$

(B) $90,85,80,75$,

$$
t(n)=95-5 n
$$

or $\quad t(n)=90-5(n-1)$

$$
t(26)=90-5(26-1)
$$

$$
=-35
$$

(c)

n	$t(n)$
1	50.5
2	6.00
3	6.25
4	6.50
5	6.75

$$
\begin{aligned}
& t(n) \\
& \text { Zerden } t_{n}=5.50-0.25 n \\
& y^{4^{x} d^{2}} t_{n}=5.75-.25(n-1)
\end{aligned}
$$

2 Consider the sequence $t(n)=-4,-1,2,5, \ldots \ldots$
A Write the equation for the sequence, $t(n)$.

$$
\begin{aligned}
1^{s t} \operatorname{tern} \quad t(n) & =-4+3(n-1) \\
t(n) & =
\end{aligned}
$$

B. Is it possible for $t(n)$ to equal 42 ?

$$
\begin{aligned}
& 42=-4+3(n-1) \\
& \frac{46}{3}=\frac{3(n-1)}{3} \quad 16 \cdot 3=\frac{n-1}{3} \quad n=17
\end{aligned}
$$

C. For the function $f(x)=3 x-7$, is it possible for $f(x)$ to equal 42 ?

$$
\begin{aligned}
42 & =3 x-7 \\
49 & =3 x \\
x & =\frac{49}{3}=17^{\frac{3}{3}} d x
\end{aligned}
$$

$$
t(n)=-4,-1,2,5, \ldots \ldots
$$

Is it possible
for $t(n)=42$

$$
\begin{aligned}
& t(n)=3 n-7 \\
& 42=3 n-7 \\
& +7 \begin{array}{l}
+7 \\
49
\end{array}=3 n \\
& n=\frac{49}{3} \approx 16.3
\end{aligned}
$$

c) Is it possible
for $t(n)=42$

$$
\begin{aligned}
t(n) & =3 n-7 \\
42 & =3 n-7 \\
+7 & +7 \\
49 & =3 n \\
n & =\frac{49}{3} \approx 16.3
\end{aligned}
$$

So, NO, the domain of a sequence onlyincludes positive nubmers.

On the other hand....
(c) Is it possible for
the function $f(x)=42$
Yes, because the domain
of $f(x)=3 n \cdot 7$
is all real numbers
so $\frac{49}{3}$ can be an
answer

3 Complete the table for the geometric sequence. Then, write sequence formulas in both first term and zero term formats.

4
Benjamin is stuck on the problem shown below. Examine his work so far and help him by showing and explaining the remaining steps.

Original problem: Simplify $\left(3 a^{-2} b\right)^{3}$.
He knows that $\left(3 a^{-2} b\right)^{3}=\left(3 a^{-2} b\right)\left(3 a^{-2} b\right)\left(3 a^{-2} b\right)$. Now what?

Original problem: Simplify $\left(3 a^{-2} b\right)^{3}$.
He knows that $\left(3 a^{-2} b\right)^{3}=\left(3 a^{-2} b\right)\left(3 a^{-2} b\right)\left(3 a^{-2} b\right)$. Now what?

$$
3 \cdot a^{-2} \cdot b \cdot 3 \cdot a^{-6} b \cdot 3 \cdot a^{-2} \cdot b
$$

$27 b^{3} a^{-4}$

Pull out your HW
check your answers with the solutions

After Test Assignment
this will count as the first assignment for the next Unit.
Find the missing terms of the sequence and write a sequence formula in both zero term and first term format.
a) \qquad , , 125, \qquad , _ , (hint: the multiplier is 1.25)
first term format: $\quad t_{n}=$ \qquad zero term format: $t_{n}=$ \qquad
b) $4000,1000,250$, \qquad , \qquad , first term format: $\quad t_{n}=$ \qquad zero term format: $t_{n}=$ \qquad

After Test Assignment

Name

Date \qquad
this will count as the first assignment for the next Unit.
Find the missing terms of the sequence and write a sequence formula in both zero term and first term format.
a) $80,100,125,156.25, \frac{95,3)^{2}}{10 . .}$ (hint: the multiplier is 1.25)
 zero term format: $t_{n}=$ \qquad
b) $4000,1000,250,6,5,15,62,, \ldots$.
$\begin{aligned} & \frac{1000}{41000}=\frac{1}{4} \frac{250}{1000}=\frac{1}{4} \\ & \text { first term format: } t_{n}=\frac{4000\left(\frac{1}{4}\right)^{n-1}}{\text { or } 4000(0.25)^{n-1}}\end{aligned}$
zero term format: $t_{n}=$ \qquad

Several customers at a fancy restaurant were reporting food poisoning. A biologist named Tina was recording bacteria growth on the cooking surfaces. She is trying to predict the amount of bacteria after 20 hours. Unfortunately she lost the count after the first hour and forgot to record count at six hours.
a) Determine the missing counts.
b) Write a sequence formula, using the notation, " $t_{n}=$ " that models the growth after n hours.
c) Use your formula to calculate the predicted bacteria counts after 20 hours.

hours	\# bacteria
1	
2	10
3	25
4	62.5
5	156.25
6	

Several customers at a fancy restaurant were reporting food poisening. A biologist named Tina we recording bacteria growth on the cooking surfaces. She is trying to predict the amount of bacteria hours. Unfortunately she lost the count after the first hour and forgot to record count at six hours.
a) Determine the missing counts.

hours	\# bacteria
1	4
2	10
3	25
4	62.5
5	156.25
6	390,625

c) Use your formula to calculate the predicted bacteria counts after 20 hours.

$$
t_{20}=4(2,5)^{20-1}=(45,519,152
$$

(3) Challenge:

Determine a formula for the geometric sequence:

$$
\begin{aligned}
68 r^{2} & =786.08 \\
r^{2} & = \\
r & =3.4
\end{aligned}
$$

\square

$$
\begin{aligned}
& \text { GDC tidbit } \\
& \text { battery usage }
\end{aligned}
$$

Four Day Unit

Transfer Skill Review from Alg/Geom before starting Chapter 2

Today's AIM:

Percent Growth

(as related to sequences and exponential functions)
requires geometric thinking

Exponential "Boot Camp"

$$
\begin{aligned}
& \text { (A) Force } 120 \text { to grow by } 15^{\prime \prime} \\
& \times 65 \\
& \text { (12), } \frac{138}{(1)}, \frac{1887}{2}, \underline{182.4} \cdots x=x \\
& 15 \% \text { of } 120 \text { ? } \quad 5^{0 \%} \text { growth } \\
& (.15)(120)= \\
& 100^{\%}+15^{\%} \\
& \text { multiplier } 1+.15 \\
& 1.15
\end{aligned}
$$

blue
handout
(A ample Force the following sequence to grow by 15%

$$
\frac{120}{1}, \frac{}{2}, \frac{}{3}, \cdots \cdots
$$

$$
120, \ldots, \ldots, \ldots, \ldots . .
$$

How can we increase any number by 15% ?

We multiply by a growth factor
$\begin{gathered}\text { Start with } \\ 100 \%\end{gathered} 100^{\% / 0}+15^{\%}$
Add $\quad 115 \%$
convert to a decimal 1.15

$$
\begin{aligned}
& \xrightarrow{120},-,- \\
& 120 \times 1.15=138
\end{aligned}
$$

(B) Force 10,000 to decrease by

$$
\begin{aligned}
& 20^{\circ} \text { decay } \\
& 100^{\circ}-20^{\prime} \\
& 1-.2
\end{aligned}
$$

$$
\begin{gathered}
\text { multiple } \rightarrow .8 \quad \frac{10,000}{6}, \frac{8000}{x}, \frac{6400}{}, \frac{5120}{} \cdots \\
g(x)=10000(.8)^{x}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{120}{1}, \frac{138}{2}, \frac{158.7}{3}, \frac{182.505}{4}, \cdots \\
& t_{n}=
\end{aligned}
$$

18,000 zero term
3% decrease
$10000, \ldots$,
$t(n)=$

$$
3^{\prime} \text { decrease }
$$

10000

$$
t(n)=
$$

example
Start with 1000 at 6.5\% growth
write a formula.

How many weeks would it take to reach 80,000

$$
\begin{aligned}
& t(n)=1000(1.065)^{n} \\
& 80000 \\
& 80000=1000(1.065)^{n}
\end{aligned}
$$

(c)

1000 anis day a) $\quad f(x)=80000(1.08)^{x}$
+8 per day
b) How many days will it take to reach 80,000 out's?

$$
1000(1.08)^{x}=80000
$$

divide by 1000

$$
\begin{aligned}
(1.08)^{x} & =\underbrace{80}_{Y_{1}} \\
X & =56.9 \text { days }
\end{aligned}
$$

How many weeks before option I Overtakes option II

Notes
what if exponents are negative ????

What if there
were negative exponents?

$$
\begin{array}{ll}
\left(\frac{3}{5}\right)^{-1}=\frac{5}{3} & 5^{-1}=\left(\frac{5}{1}\right)^{-1}=\frac{1}{5} \\
\left(\frac{a}{d e}\right)^{-1}=\frac{d e}{a} & \left(\frac{1}{x}\right)^{-1}=x
\end{array}
$$

$$
\begin{aligned}
& \left(\frac{1}{4}\right)^{-2}=\left(\frac{4}{1}\right)^{2}=16 \quad\left(\frac{1}{3}\right)^{-1} \frac{1}{3^{-1}}=3^{1}=3 \\
& \left(\frac{x}{y}\right)^{-3}=\left(\frac{y}{x}\right)^{3}=\frac{y^{3}}{x^{3}} \quad \frac{1}{x^{-2}}=x^{2} \\
& \left(\frac{3 x}{y}\right)^{-2}=\left(\frac{y}{3 x}\right)^{2}=\frac{y^{2}}{9 x^{2}} \quad \frac{3^{1}}{e^{-2}}=3 e^{2} \quad 3 e^{2}
\end{aligned}
$$

$$
\begin{aligned}
& a^{4} b^{-2} \cdot a^{3} \cdot b^{4}= \\
& x^{4} \cdot y^{-2} \cdot x^{-5} y^{2}= \\
& \frac{n^{8}}{n^{-2}}= \\
& \frac{5 x^{-3}}{x^{6}}=
\end{aligned}
$$

Each pair should pick up and work on one handout.

Exponent Review

Boot camp

Manipulating Powers

1) $\left(a^{x}\right)^{y}=a^{x y}$	4) $(a b)^{x}=a^{x} b^{x}$	7) $\frac{1}{a^{-x}}=a^{x}$
2) $a^{x} \cdot a^{y}=a^{x+y}$	5) $\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}$	
3) $\frac{a^{x}}{a^{y}}=a^{x-y}$	() $a^{-x}=\frac{1}{a^{x}}$	

4. $\left(\frac{x}{y^{3}}\right)^{5} \frac{x^{5}}{y^{15}}$
5. $y^{-15}=\frac{1}{y^{15}}$
6. $\frac{1}{x^{-15}} x^{15}$

8. $\left(2 c^{2}\right)^{3}$

10. $4 a^{5} \cdot 3 a^{3}$ $12 a^{8}$
9. $\frac{n^{4} \cdot n^{6}}{n^{8} \cdot n^{2}} \quad \cap^{8} \quad \frac{n^{16}}{x^{10}}$

1
11. $\left(\frac{v}{3}\right)^{4} \cdot\left(\frac{5}{v}\right)^{2} \frac{v^{2} v^{4}}{81} \cdot \frac{25}{x^{2} 1}$
12. $\left(x^{-2}\right)^{2}$
13. $\left(\frac{2}{x}\right)^{-1}$

Assignment:

is in Appendix \mathbf{A} in the back Appendix
A.....10, 23, 88, 91, 92, 116, 119, 120

C	D
$(-2 A)^{3}$	$(-4 A)^{2}$
$E)$	
$\left(A^{4}\right)^{4}$	$\left(A^{2}\right)^{3}$
H	I
$\left(-3 A^{2}\right)^{2}$	$3 A(2 A)^{2}$
$\left.L A^{4}\right)^{3}$	$\left(5 A^{5}\right)^{2}$

