See Your Ch I Test
\checkmark Each group gets 1 copy of solutions \checkmark Learn from your mistakes. You could see the same question on future tests.
\checkmark Ill collect all when finished.
\checkmark Feel free to come in to go over the tests.

Some common
issues I noticed
on the test
any one need to leave?
(have not taken test)

$$
\begin{array}{ll}
(x-4)^{2}=25 & (m+3)^{2} \\
\downarrow & m^{2}+9 \\
\text { NOT } & \\
x^{2}-16=25 & (m+3)(m+3)
\end{array}
$$

$(6)^{2}$	$(-6)^{2}$	$-(6)^{2}$	-6^{2}
36	36	-36	-36

$\frac{-4}{10} \quad \frac{4}{-10}$

$$
-\frac{4}{10}
$$

- $\rightarrow \quad-\frac{2}{5}$

$$
\begin{array}{ll}
\text { Solve for } n \\
m^{2} & =(\sqrt{n+3})^{2} \\
(m)^{2} & \begin{array}{l}
\text { Subject ends up } \\
\text { on the left }
\end{array} \\
m^{2}=n+3 \\
m^{2}-3=n & n=m^{2}-3
\end{array}
$$

So many made this too hard !!

5. Calculate both the x - and y -intercepts for $2 x+3 y=6$ and show how this can be done using algebra for full credit (other methods partial credit)
$\operatorname{set} x=0$

$$
\begin{array}{r}
+3 y=6 \\
3 y=6 \\
y=2
\end{array}
$$

Set $y=0$

$$
2 x+3(0)=6
$$

$$
2 x=6
$$

$$
x=3
$$

(3.0)

Seeing your test

$$
\begin{gathered}
\checkmark=1 \text { mark } \\
\checkmark \checkmark=2 \text { marks } \\
\checkmark \checkmark v=3 \text { marks } \\
\checkmark \checkmark v v=4 \text { marks } \\
E+C
\end{gathered}
$$

$G S=$ See the Solutions

$$
b \bullet F T
$$

c)

You did the correct thing on this problem even though you used the incorrect answer from the previous problem. $($ So IMam not marking this)

$$
10 \quad 30 \quad 50 \quad 7090
$$

(1) Use the recursive formula
to list the first 5 terms $\left\{\begin{array}{l}t_{1}=10 \\ t_{n+1}=t_{n}+20\end{array}\right.$

$6 \quad 18 \quad 54 \quad$| 162 |
| :--- |
| |

(2) Use the explicit formula, $t_{n}=2(3)^{n}$ to
a) list the first 4 terms
b) Write its recursive

$$
\begin{aligned}
& t_{1}=2(3)^{\prime}=6 \\
& t_{2}=2(3)^{2}=18
\end{aligned} \quad\left\{\begin{array}{l}
t_{1}=6 \\
t_{n+1}=3 t_{n}
\end{array}\right.
$$

3 Without using any type of a calculator, make a quick sketch of each graph below. Label the y-intercept.

$$
\xrightarrow{\substack{\downarrow \\ y=10\left(\frac{1}{2}\right)^{x}}}
$$

$$
y=\frac{1}{10}(5)^{x}
$$

A-39
a)

$$
\begin{aligned}
5-(y-2) & =3 x \\
5-y+2 & =3 x \\
-y+7 & =3 x \\
-7 & =3 x-7 \\
y & =-3 x+7
\end{aligned}
$$

$5 x+5 y=-2$
$5 y=-5 x-2$
divide

$$
y=-\frac{5}{5} x-\frac{2}{5}
$$

$$
y=-x-\frac{2}{5}
$$

A - 54 a substition method work well here

$$
8 x=-8
$$

Solution $(-1,-7)$

$$
\begin{aligned}
& \begin{array}{l}
y \neq 3 x=-10 \\
-3 x
\end{array} \quad 5 x-y=2 \\
& y=-3 x-10=5 x-[-3 x-10]=2 \\
& 5 x+3 x+10=2 \\
& 8 x+10=2
\end{aligned}
$$

$$
\begin{aligned}
& \mid A-54 b \\
& 6 x=7-2 y \\
& 4 x+y=4 \\
& y=-4 x+4 \quad 6 x=7-2 y \\
& 6 x=7-2[4 x+4] \\
& 6 x=7+8 x-8 \\
& 6 x=8 x-1 \\
& \frac{-8 x}{6 x} \\
& \frac{-2 x}{}=-1 \\
& x=\frac{1}{2}
\end{aligned}
$$

$$
y=-2+4=2
$$

A-89 $\begin{gathered}\text { Recurbive } \\ \text { Sequences }\end{gathered}$
(a) $t_{1}=-3^{-h} \begin{gathered}\text { sequence } \\ \text { gianss at }\end{gathered}$

$$
t_{n+1}=-2 \cdot t_{n}
$$

$$
-3,6,-12,24,-48
$$

b)

$$
\begin{aligned}
& t_{1}=8 \\
& t_{n+1}=t_{n}-5
\end{aligned}
$$

$$
8,3,-2,-7,-12
$$

c) $t_{1}=2$

$$
2, \frac{\frac{1}{2}}{2}, 2, \frac{\frac{1}{2}}{2}, 2
$$

$$
\begin{aligned}
t_{n+1} & =\left(t_{n}\right)^{-1} \\
& =\frac{1}{t_{n}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { A-102 (a) }\left(2 m^{3}\right)\left(4 m^{2}\right)=8 m^{5} \\
& \text { (b) } \frac{6 y^{5}}{3 y^{2}}=2 y^{3} \\
& \text { (c) } \frac{-4 y^{2}}{6 y^{7}}=-\frac{2}{3 y^{5}}
\end{aligned}
$$

$$
\text { d) }\left(-2 x^{2}\right)^{3}
$$

$$
=(-2)^{3}\left(r^{2}\right)^{3}
$$

$$
-8 x^{6}
$$

$A-105$

a) $(x+2)(x+3)=x^{2}-10$

$$
\begin{gathered}
x^{2}+3 x+2 x+6=x^{2}-10 \\
5 x+6=-10 \\
5 x=-6 \\
x=-\frac{16}{5}
\end{gathered}
$$

b) $\frac{1}{2} x+\frac{1}{3} x-7=\frac{5}{6} x$

$$
3 x+2 x-42=5 x
$$

$$
\begin{array}{r}
5 x-42=5 x \\
-5 x
\end{array}
$$

$$
-42=0
$$

Never true
so there are no
Solutions
C) $|2 x-1|=9$

$$
2 x=10
$$

$$
2 x=-8
$$

$$
x=5
$$

$$
x=-4
$$

two solutions
d)

$$
\begin{aligned}
& \frac{x+1}{3}=\frac{x}{2} \quad \text { crosultiply } \\
& 2(x+1)=3 x \\
& 2 x+2=3 x \\
&-2 x \\
& 2=x \\
& x=2
\end{aligned}
$$

Nor $2=x$

Appendix 3
B-11
a) $\left(3 x^{2} y z^{4}\right)^{2}=9 x^{4} y^{2} z^{8}$
b) $\left(\frac{r^{2} g}{r s^{3} t}\right)^{3}=\left(\frac{r}{s^{2} t}\right)^{3}=\frac{r^{3}}{s^{6} \cdot t^{3}}$
c) $(3 m+7)(2 m-1)=6 m^{2}-3 m+14 m-7=6 m^{2}+11 m-7$
d) $(x-3)^{2}=(x-3)(x-3)=x^{2}-3 x-3 x+9=x^{2}-6 x+9$

B-46
DVD loses 60% every year
start at $\$ 80$ start at $\$ 80$
a) Multiplier $0.4 \longleftarrow 100^{\%}-60^{\circ}=40 \%$
b) $y=80(0.4)^{1}=\frac{43}{32}$ after 1 year

$$
\begin{aligned}
& y=80(0.4)^{4}=820(0.4)^{4}=\$ 2.05 \text { after } 4 y=s \\
& y=8
\end{aligned}
$$

c) $V(t)=80(0.4)^{t}$
d) In theory it will never go

$$
\text { to } 0
$$

(3)

In this question you will expand your skills. Think of it as a puzzle in which you are using clues to create an exponential equation.

\square

Tickets for a concert have been in incredibly high demand, and as the date for the concert draws closer, the price of tickets increases exponentially.

The cost of a pair of concert tickets was $\$ 150$ yesterday, and today it is \$162.

As you complete parts (a) through (c) below, assume that each day's percent increase from the day before is the same.

1. What is the daily percent rate of increase? What is the multiplier?

2. Write a function that represents the price of tickets after t days ?
3. What was the cost of a pair of tickets two weeks ago?

$$
150(1008)^{(-14)}
$$

(a) population of ants growing by a $102^{\prime \prime}$ constant percentage. What percent is the population growing by?
(b) What is the percent growth if \quad the equation was $y=50(1.26)^{x}$? $126^{\%}$ so $26^{\prime \%}$ growth a) What if it was $y=10000(.7)^{x}$? $100^{\circ}-30^{\prime \prime}=70^{\circ}$

$y=a b^{x}$

x	y
1	
2	8
3	20
4	50

Very similar to their cousin, the Sequences

Graphs to Equations

$$
y=a b^{x}
$$

$$
(0,320)
$$

