Pick up the Warm Up

Monday

Turn in the 2nd HW Packet and there will be a Quiz on Sequences \& Exponential Functions

1 Last week we learned to create an exponential function in the form $\mathrm{y}=\mathrm{ab}^{\mathrm{x}}$
using the "Double Substitution Method". Use it now to find the exponential function that passes through the two points $(2,12)$ and $(5,187.5)$

$1875=\frac{12}{1 \hbar^{2}} b^{3}$
so $12 b^{3}=187 b^{5}$

$$
b^{3}=\frac{1875}{12}
$$

$12=a b \quad 1835=a b^{2}$

$b=2 ; 5$

$$
a=\frac{12}{(2.5)^{2}}=1.92
$$

$$
y=1.92(2.5)^{x}
$$

Compound Interest Formula:

$$
y=a b^{x}
$$

Future Value $=P V\left(1+\frac{r}{k}\right)^{k t}$
where $\quad P V=$ Present Value
$r=$ annual interest (as a decimal)
$t=$ number of years $\$$ is being invested $k=\#$ times per year interest is compounded

Find the future value of an 8 year investment of $\$ 4500$ that pays an annual interest of 4.25%, compounded once once a year.

$$
F V=4500(1.04)^{8}=6,1588^{56} 104
$$

Find the future value of an 8 year investment of $\$ 4500$ that pays an annual interest of $4,25 \%$, compounded once TWICE a year.
$F V=P V\left(1+\frac{\sigma^{\circ}}{K}\right.$

$$
\text { Future Value }=P V\left(1+\frac{r}{k}\right)^{k t}
$$

(5)

$$
40 x^{2}+80 x-50
$$

remember that all common factors have to pulled out first in order to use the box method.
10 (

$$
()
$$

$10\left(4 x^{2}+8 x-5\right)$
10()()
(6) Solve

$$
(16)^{n}=4^{5 n+1}
$$

-53
a)

$$
\begin{aligned}
2 x+y & =-7 y \\
y & =x+10
\end{aligned} \quad \text { Substitution! }
$$

$$
\begin{aligned}
& y=x+10 \\
& 2 x+(x+10)=-7(x+10) \\
& \left.\begin{array}{l}
y x+10 \\
+7 x
\end{array}\right) \\
& 10 x+7 x-70 \\
& 10 x=-7 x
\end{aligned}
$$

b)
$B-73$ a) $3 \cdot x^{2} \cdot \frac{1}{x^{-1}} \cdot y^{-3} \cdot \frac{1}{y^{2}}$

b) $\frac{m^{2} p^{1} q^{-1}}{4 m^{-2} p_{p} q^{3}}$
\downarrow

(2,

B-94 Exponential functions
a) $(1,7.5)(3,16.87)$

$$
\begin{array}{rl}
16.875 & =\frac{7.5}{D} \cdot b^{3} \\
16.875 & =7.5 b^{2} \\
b^{2} & =\frac{16.855}{7.5} \\
r & r \\
b & =1.5 \rightarrow a
\end{array}
$$

(b) $(-1,1.25) \quad(3,0.032)$

$$
\begin{array}{ll}
y=a b^{x} & y=a b^{x} \\
1.25=a b^{-1} & 0.032=a b^{3}
\end{array}
$$

ming d Divide $2^{\text {nd }}$ equation by the first
ni s
no

$$
\begin{aligned}
& \frac{.032}{1.25}=\frac{a b^{3}}{4 b^{-1}} \\
& .0256=b^{3} \cdot b^{\prime} \\
& b^{4}=.0256 \\
& \sqrt[4]{ } \begin{array}{l}
a b^{3}=.032 \\
b
\end{array} \\
& a(.4)^{3}=.032 \\
& a=\frac{.032}{.43} \\
& a=0.5
\end{aligned} \quad\left\{\begin{array}{l}
a=0.5(0.4)^{x}
\end{array}\right.
$$

$$
2-6 \text { A negative coefficient } \cdots \cdots
$$

$$
\begin{aligned}
& y=x^{2} \\
& y=-3 x^{2} \\
& y=-0.25 x^{2}
\end{aligned}
$$

a.

c.

b.

d.

Aim How can I translate (shift) a parabola?

$$
\begin{aligned}
& Y_{1}= \\
& Y_{2}=(x-2)(x-2) \\
& Y_{3}
\end{aligned}
$$

Decide who will be your group's:

\checkmark page 60

Notes $2-11$ core problem
\checkmark Ill be circulating to answer questions

- I will assume you will have discussed $w /$ each other first.
\checkmark The StY can go to another group to get help as needed
- No repeats-

(b) $Y_{1}=L$ experiment in Y_{1}

$$
Y_{2}=(x-2)(x-2)
$$

(b)	
$y=20(x-2)(x-2)^{2}$	
$y=4(x-2)(x-2)$	
$y=\frac{1}{10}(x-2)(x-2)$	
$y=0!(x-2)(x-2)$	$y=-(x-2)(x-2)$
$y=\frac{1}{5}(x-2)(x-2)$	$y=-2(x-2)(x-2)$
y	

(d)

$$
\begin{array}{ll}
y=-(x+4)(x+4) \\
(-4,0) & y=-\frac{1}{10}(x+4)(x+4) \\
y & y=-2(x+4)(x+4)
\end{array}
$$

Why does $y=(x-2)(x-2)$ only touch the x-axis at $x=2$?

Sharing of equations you have developed.
parabolas that touch the x-axis only at $x=2$ (and open downward)

The 2nd Homework Packet is due Monday. Penalty if late.

Assignment

2-... 16, 17, 18ab, 19-20, 21c

