Let me know of there is a HW problem you want me to go over.

HW Tally: You should put up a maximum of 2 or 3 problems (the ones you need the most help with). If you need help with more, then you should be coming in for help before school!

Pick Up the Warm Up
(1) Solve for \boldsymbol{m} (in other words, re-arrange the equation to isolate m)

$$
3(n)=\frac{z(7)}{3} m-(10)^{3} \text { or }
$$

$$
\begin{aligned}
3(n)+3(10) & =3 \frac{7}{3} m \\
3 n+30 & =7 m
\end{aligned}
$$

Clear

$$
\begin{aligned}
& \text { out } \quad 3 n=7 m-30 \\
& \text { the }+30 \\
& \text { fractions } 3 n+30=7 m \\
& \text { An } \\
& \qquad m=\frac{3 n+30}{7} \quad m=\frac{3 n}{7}+\frac{30}{7}
\end{aligned}
$$

2 Find the error in the solution at right. Explain what the error is and solve the equation correctly. Be sure to check your answer.

$$
\begin{array}{ll}
\frac{5}{x}=x-4 \quad\left(\langle x) \frac{5}{x}=k x-4(x)\right. \\
x \cdot \frac{5}{x}=(x)-(4 x) \\
5=x-4 & 5=x^{2}-4 x \\
x=9 \quad-5 & -5
\end{array}
$$

$$
0=x^{2}-4 x-5
$$

$$
0=(x+1)(x-5)
$$

$$
2 P p
$$

(3) Show how to find the y-axis intercept AND x-axis intercepts) algebraically of the following function. when you are done, you can check with your calculator.

$$
\begin{array}{ll}
\begin{array}{ll}
(0) & y=x^{5}-18 \\
\frac{x \text {-intercept }}{\text { Set } y=0} & \frac{y \text {-intercept }}{\text { set } x=0} \\
x^{5}-18=0 & y=\varnothing^{\bar{x}}-18 \\
\sqrt[5]{x^{5}}=18 & y=-18 \\
\sqrt[5]{\sqrt[5]{18}} & (\sqrt[5]{18}, 0) \\
x=\sqrt[5]{18} & (0,-18)
\end{array} \\
&
\end{array}
$$

(4.) Making "ONes"

$$
\frac{15}{1}=1 \quad \frac{1}{5}=1 \quad \frac{1 x \cdot x}{\frac{1}{6}}=1 \quad \frac{1 x^{2}}{1 \times x \cdot x}=1 \quad \frac{4 n^{x^{\prime}}}{x^{3}}=1
$$

$$
\frac{n \cdot n \cdot n}{n \cdot n}=n \quad n^{\prime} \frac{n^{3}}{n^{2}}=n \quad \frac{m^{4} \frac{n n^{4} \cdot n^{2^{\prime}}}{1 n \cdot b^{2}}=m^{4}}{1 \frac{1}{2}}
$$

(5) There are seven exponent "laws" two of which can be tricky.

$$
\frac{a^{m}}{a^{n}}=a^{m-n} \text { and }(a b)^{m}=a^{m} b^{m}
$$

$\left\{\begin{array}{l}\frac{x^{5}}{x^{3}}=x^{5-3}=x^{2} \quad \text { or just make "Ones" instead } \frac{x^{5}}{x^{3}} \\ \frac{4-6}{a^{6}}\end{array}\right.$

$$
\frac{4 x^{\prime} y^{2} t}{5 m x^{4}}=\frac{4 y^{2} t}{5 m x^{3}}
$$

$$
\begin{align*}
& \left\{\begin{array}{l}
\left(5 x^{3}\right)^{2}=5^{2} \cdot\left(x^{3}\right)^{2}=25 x^{6} \\
\left(-2 m^{3}\right)^{3}= \\
-8 m^{9}
\end{array}\right. \\
& (-2)^{3}\left(m^{3}\right)^{3} \tag{-3}\\
& -2 \cdot-2 \cdot 2
\end{align*}
$$

$$
\begin{gathered}
\left(2 n^{2} m\right)^{4}=\frac{2^{4}\left(n^{2}\right)^{4} m^{4}}{16 n^{8} m^{4}} \\
\left(-3 n^{2} e^{3}\right)^{2}=
\end{gathered}
$$

$$
9 n^{4} e^{6}
$$

HW Questions

Today you will learn a "Big Picture" skill
That can be applied throughout the rest of the Algebra 2 course.

GOALS
\longrightarrow
Completely describe a function by making summary statements.

Notes taped

 INTO

Function Investigation Questions to help make Summary Statements about Functions

1. Describe the Shape of the Graph (and Sketch it)
2. Describe any special points (if any) and their location ? (besides x - and y-intercepts)
3. What is the maximum or minimum y-value (if any) denoted as $y_{\max }$ or $y_{\text {min }}$.
4. What is the domain?
5. What is the range ?
6. End behavior - What happens to the y-values when x increases to ∞ ? when x decreases to $-\infty$?
7. Axis intercepts:
a. What is the y-intercept?
b. What are the x -intercept(s)?
8. Asymptotes:
a. Are there any vertical asymptotes? If so what are their equations?
b. Are there any horizontal asymptotes? If so what are their equations?
9. What kind of symmetry does this function have? (if any) (y-axis symmetry?, rotational symmetry?)
10. .

In order to do that you need a solid understanding of ASYMPTOTES
graph $f(x)=\frac{1}{x-7}$
From the table look at the y-values associated with the five x-values below 7 and the flue above

What is the x-value that has no y-value?

x	y
2	-0.2
3	-0.25
4	$-0 . \overline{3}$
5	-0.5
6	-1
7	under.
8	1
9	0.5
10	$0 . \overline{3}$
11	0.25
12	0.2

What is the x-value that has no y-value?

x	y
2	-0.2
3	-0.25
4	$-0 . \overline{3}$
5	-0.5
6	-1
7	undef.
8	1
9	0.5
10	$0 . \overline{3}$
11	0.25
12	0.2

domain

Now Use table set to start at 5 with an incremental change of 0.1

Next .. incremental chage of

In Alg log, create the table and make the sketch

The closer we get to $x=7$ the y-values get inifnitely large or small.
which is an asymptopic situation

Analyze

$$
y=(x+3)^{2}-2
$$

Using the 9 investigation questions

(7) $x-\operatorname{inT}(-4.414,0)\left(-1.585^{2}, 0\right)$

$$
y \text {-int }(0,7)
$$

(8) No asymptotes

Analyze

$$
g(x)=\frac{1}{x-4}
$$

Investigate your function using the 9 questions

Assignment

$$
\text { 1-84, 86, 89ade, 91, 93, 95, } 97
$$

\square Use the 9 Function Investigation Questions

