HWCheck

Questions on HW (Except for page 333... #5)

2 (Also, see your LCQ)

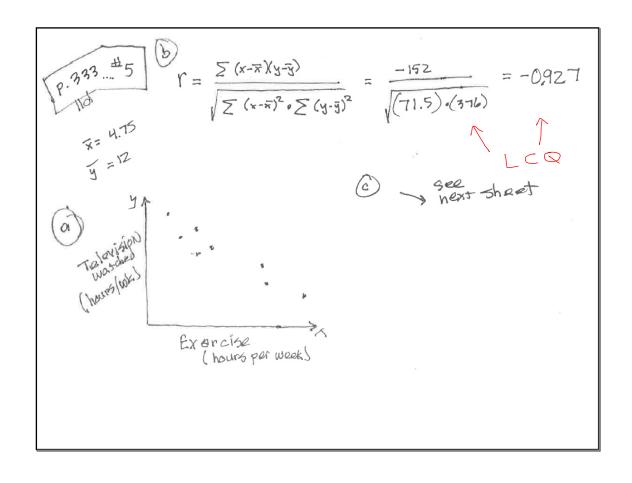
1 Construct an expected frequency table for the following contingency tables:

	Likes chicken	Dislikes chicken	sum
Likes fish			60
Dislikes fish			40
sum	75	25	100

EXERCISE 11E.1

	Likes chicken	Dislikes chicken	sum
Likes fish	45	15	60
Dislikes fish	30	10	40
sum	75	25	100

•		Drove to work	Cycled to work	Public transport	sum
	Male				44
	Female				36
	sum	46	14	20	80


Public Cycled Drove sumto work transportto work Male 25.3 7.7 11 44 20.7 9 Female 6.3 36 46 14 20 80 sum

c		Junior school	Middle school	High school	sum
	Plays sport	35	59	71	165
	Does not play sport	23	27	35	85
	sum	58	86	106	250

c		Junior school	Middle school	High school	sum
	Plays sport	38.28	56.76	69.96	165
	Does not play sport	19.72	29.24	36.04	85
	sum	58	86	106	250

d		Wore hat and sunscreen	Wore hat or sunscreen	Wore neither	sum
	Sunburnt	3	5	13	
	Not sunburnt	36	17	1	
	sum				

d		Wore hat and sunscreen	Wore hat or sunscreen	Wore neither	sum
	Sunburnt	10.92	6.16	3.92	21
	Not sunburnt	28.08	15.84	10.08	54
	sum	39	22	14	75

3)
$$S_{x} = 4.75$$

 $S_{x} = 2.9896$ $S_{xy} = \frac{\sum (x_{i} - \overline{x})(y_{i} - \overline{y})}{n}$

$$= \frac{-152}{8} = -19$$

Equation of
$$y - y = \frac{S_{xy}}{(S_x)^2}(x - x_1)$$
 using the mean point $y - 12 = \frac{-19}{(2.9896)^2}(x - 4.75)$

$$y - 12 = \frac{-19}{(2.9896)^2}(x - 4.75)$$

$$y - 12 = -2.13(x - 4.75)$$

$$y = \frac{-19}{(2.9896)^2}(x - x_1)$$

Your calculator can also generate the expected values as we'll see later

d		Wore hat and sunscreen	Wore hat or sunscreen	Wore neither	sum
	Sunburnt	3	5	13	
	Not sunburnt	36	17	1	
	sum				

Schedule

Next class---The full Chi-Square Test of Indep. Process with P-Value

<u>Tuesday</u>- Special Situations + big **LCQ**

Wednesday- Get a list of Unit 2 Test items, continued practice,

Packet P3 (Info on selecting a project and Ideas for project)

Thursday- Evaluate another past project (using the scoring guide) + Use

Computer spreadsheet to calculate Yand LSRL

<u>Friday</u> - Review Questions + Start Numerical Trigonometry

Monday - Test on Unit 2 (Statistical Applications)

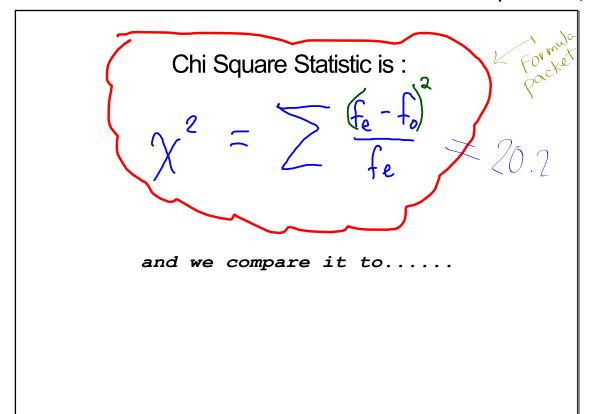
Monday - Test on Unit 2 (Statistical Applications)

Pick UP the Class Notes

read the first 4 slides and then Stop

is a statistic that measures the difference between observed values and expected values in a contingency table

Opselve Charles	ncies	Regular exercise	No regular exercise	
Credit	Male	112	104	216
•	Female	96	88	184
		308	192	004


~1	ED C	Regular exercise	No regular exercise	sum
EXPECT!	Male	$\frac{216 \times 208}{400} \doteqdot 112.3$	$\frac{216\times192}{400} \doteqdot 103.7$	216
4160.	Female	$\frac{184 \times 208}{400} = 95.7$	$\frac{184 \times 192}{400} \doteqdot 88.3$	184
	sum	208	192	400

If the chi square value that we calculate is big enough, then we can establish a:

linkage between two variables
association between to variables
relationship between the variables

If the variables in this example are, indeed, associated, then gender <u>might</u> have an effect on regular exercise but just being associated or linked does not prove causation.

What you can say is.....

X cvet

....the cutoff, or critical Chi-Square Value which is either given to you (or found in a resource table).

..... which, in turn, will tell us whether to accept or reject the assumed independence between the two variables. Independent

Dependent

Dependent

Associated

Linked

Related

Connected

AIM:

Calculate the Chi-Square Statistic, 3 different ways

Carry out the entire Test of Independence

Before we go on to a new situation we need to practice calculating X^2 by using the formula itself.

For this we'll continue to use the same example from yesterday

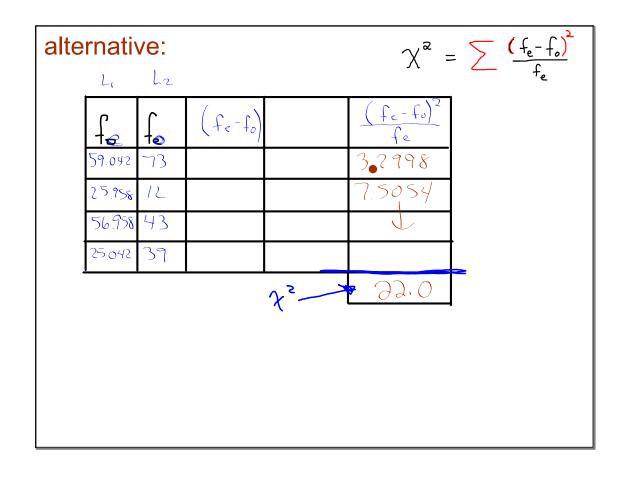
handout

Once the expected cell frequencies are computed, it is convenient to enter them into the original table as shown below. The expected frequencies are in parentheses.

	Graduated	Failed to Graduate	Total
Experimental	73 (59.042)	12 (25.958)	85
Control	43 (56.958)	39 (25.042)	82
Total	116	51	167

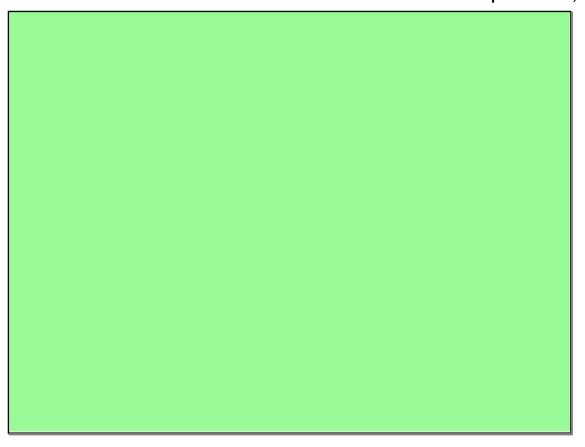
	anied
Op:	servos
fre	served quencies

	Graduated	Failed to Graduate	Total
Experimental	73	12	85
Control	43	39	82
Total	116	51	167


Expected frequencies

	Graduated		
Experimental	59.042	2 5 959	85
Experimental Control	56948	15. 642	82
Total	116	51	167

$$\chi^{2} = \frac{\left(f_{e} - f_{o}\right)^{2}}{f_{e}}$$


$$= \frac{\left(5\%042 - 73\right)^{2}}{59.042} + \frac{\left(25\%958 - 12\right)^{2}}{25\%8512} + \cdots$$

Use GDC !!!

Section J of your calculator Basics

- a. Choose MATRIX and go to EDIT
- b. Make sure your matrix is the right size
- c. Enter your Observed values in Matrix A
- d. Choose STAT and go to TESTS
- e. Scroll down to χ^2 -Test and press ENTER
- f. Choose Calculate.
- g. Your expected values can now also be found in Matrix B

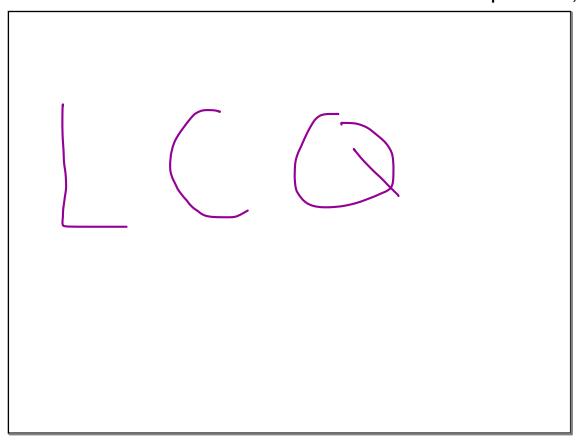
We'll step back and just observe example of the whole process

(ppt: Chi Square ppt)

Chi-Square Test of Independence.pptx

Because of time (Domn Assembly!)
We'll conduct the entire test on Monday

However, I want you to study the entire process from a packet that shows an example.


don't lose this packet.

~ Write your name on it.

- Once again pick up the project on Teenage pregnancy. Have your Project Scoring Criteria out as well.
- Quietly read Critera D.

 Then score the project but don't write
 on it.

Assignment: Ch.11 Packet

Practice Problem with Correlation and LSRL by "hand": handout with Gross Domestic Product and Infant Mortality Rate

 September 28, 2

g