First Test
Tuesday Sept. $18^{\text {th }}$

13
Describing Quantitative Data with numbers

By the end of this section, you should be able to:
\checkmark CALCULATE measures of center (mean, median) for a distribution of quantitative data.
\checkmark CALCULATE and INTERPRET measures of variability (range, standard deviation, IQR) for a distribution of quantitative data.
\checkmark EXPLAIN how outliers and skewness affect measures of center and variability.
\checkmark IDENTIFY outliers using the $1.5 \times$ IQR rule.
\checkmark MAKE and INTERPRET boxplots of quantitative data.
\checkmark Use boxplots and numerical summaries to COMPARE distributions of quantitative data.
\square

Here are the data on the number of goals scored in 20 games played by the 2016 U.S. women's soccer team:

551105211233214212193

$$
\begin{aligned}
& \bar{x}=\frac{1+1+1+1+1+1+2+2+2+2+2+3+3+3+4+5+5+5+9+10}{20} \\
& \bar{x}=3.15 \text { goals }
\end{aligned}
$$

A statistical measure is resistant if it isn't sensitive to extreme values.
3.

What
resistant
measure?
A statistic that does not dramatically change when an extreme value (low or high) gets added to the distribution.

Here is the mean number of goals scored by the 2016 U.S. women's soccer team, if we exclude the games that ore possible outliers (when they scored 9 and 10 goals).

Here is the mean number of goals sowomen's soccer team, if we ev-1 possible outliers (when ${ }^{+1}$ not a resistant

A statistical measure is resistant if it isn't sensitive to extreme values.

of

\rightarrow Appendix F-I
\rightarrow Your own copy you can
Use during quizzes and tests

- we may write other tidbits on this sheet later but...

4. How many likes on Instagram for ASA?

The American Statistical Association (www.amstat.org) has an Instagram account (@amstatnews) to post updates on new statistical publications and adorable normal distribution plushies. Here are the number of Instagram likes for 10 posts selected at random:

$$
\begin{array}{rrrrr}
16 & 4 & 8 & 7 & 8 \\
6 & 15 & 2 & 9 & 5
\end{array}
$$

(a) Calculate the mean number of Instagram likes for these 10 posts. Show your work.

$$
\bar{x}=\frac{\sum x}{n}=\frac{16+4+8+\infty 0}{10}=\frac{80}{10}=8 \text { pikes }
$$

(b) The posts with 15 and 16 likes are possible outliers. Calculate the mean number of Instagram likes in the other 8 posts. What do you notice?
5. How can you estimate the mean from a histogram or dot plot?

$$
\frac{1.1 .5+1.4 .5+6.5 .6+}{47}
$$

if n is odd if n is even

Here are the data on the number of goals scored in 20 games played by the 2016 U.S. women's soccer team:

Raw data

$$
\begin{array}{llllllllllllllllllll}
5 & 5 & 1 & 10 & 5 & 2 & 1 & 1 & 2 & 3 & 3 & 2 & 1 & 4 & 2 & 1 & 2 & 1 & 9 & 3
\end{array}
$$

Sorted data

Here are the data on the number of goals scored in 20 games played by the 2016 U.S. women's soccer team:

Raw data

$$
\begin{array}{lllllllllllllllllllll}
5 & 5 & 1 & 10 & 5 & 2 & 1 & 1 & 2 & 3 & 3 & 2 & 1 & 4 & 2 & 1 & 2 & 1 & 9 & 3
\end{array}
$$

Sorted data

$$
\begin{array}{lllllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 3 & 3 & 4 & 5 & 5 & 5
\end{array} 910
$$

Here are the data on the number of goals scored in 20 games played by the 2016 U.S. women's soccer team:

Raw data

$$
\begin{array}{llllllllllllllllllll}
5 & 5 & 1 & 10 & 5 & 2 & 1 & 1 & 2 & 3 & 3 & 2 & 1 & 4 & 2 & 1 & 2 & 1 & 9 & 3
\end{array}
$$

Sorted data

$$
\begin{aligned}
& \text { Median }=\frac{2+2}{2}=2
\end{aligned}
$$

Comparing
 Mean and Median

Applet

Effect of Skewness and Outliers on Measures of Center

- If a distribution of quantitative data is roughly symmetric and has no outliers, the mean and median will be similar.
- If the distribution is strongly skewed, the mean will be pulled in the direction of the skewness but the median won't. For a rightskewed distribution, we expect the mean to be greater than the median. For a left-skewed distribution, we expect the mean to be less than the median.
- The median is resistant to outliers but the mean isn't.

Variability
-Range
-Standard Deviation
-IQR (Inter quartile range)

> The range of a distribution is the distance between the minimum value and the maximum value. That is,
> Range $=$ Maximum - Minimum

Here are the data on the number of goals scored in 20 games played by the 2016 U.S. women's soccer team:

$$
551105211233214212193
$$

$$
\text { Range }=10-1=9 \text { goals }
$$

CAUTION:

- The range of a data set is a single number.
- The range is not a resistant measure of variability.

Measuring Variability: The Standard Deviation

$$
g_{x}=\sqrt{\frac{\sum\left(x_{p}-\bar{x}\right)^{2}}{n-1}}
$$

The standard deviation measures the typical distance of the values in a distribution from the mean.
or

$$
S_{x}=\sqrt{\frac{1}{n-1} \sum\left(x_{i}-\bar{x}\right)^{2}}
$$

\square

Measuring Variability: The Standard Deviation

How to calculate standard deviation, s_{x} :

1) Find the mean of the distribution.
2) Calculate the deviation of each value from the mean: deviation = value - mean.
3) Square each of the deviations.
4) Add all the squared deviations, divide by $n-1$, and take the square root.
The standard deviation measures the typical distance of the values in a distribution from the mean.

Measuring Variability: The Standard Deviation

How to calculate standard deviation, s_{x} :

1) Find the mean of the distribution.
2) Calculate the deviation of each value from the mean: deviation = value - mean.
3) Square each of the deviations.
4) Add all the squared deviations, divide by $n-1$, and take the square root.

The standard deviation

 measures the typical distance of the values in a distribution from the mean.$$
s_{x}=\sqrt{\frac{\left(x_{1}-\bar{x}\right)^{2}+\left(x_{2}-\bar{x}\right)^{2}+\cdots+\left(x_{n}-\bar{x}\right)^{2}}{n-1}}=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}}
$$

How to calculate standard deviation, s_{x} :
 1) Find the mean of the distribution.

2) Calculate the deviation of each value from the mean: deviation = value - mean.
3) Square each of the deviations.
4) Add all the squared deviations, divide by $n-1$, and take the square root.

The value obtained before taking the square root in the standard deviation calculation is known as the variance.
high school students were asked how many "close" friends they have.
are their responses: 12223333446

alculate standard

the mean of the ribution.
ulate the deviation of value from the mean:
ation $=$ value - mean.
are each of the
ations.
all the squared
ations, divide by $\mathrm{n}-1$, take the square root.
$s_{x}=\sqrt{\frac{18}{11-1}}=1.34$ close friends
The value obtained before taking the square root in the standard deviation calculation is known as the variance.
$s_{x}^{2}=\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}=\frac{18}{11-1}$
$=1.80$ squared close friends
6. How many likes on Instagram for ASA?

Here are the number of Instagram likes for 10 posts selected at random:

2	4	5	6	7
8	8	9	15	16

Calculate the standard deviation. Interpret this value in context.
t able or follow sequence

Interpretation
The number of instagram likes for each ASA post typically varies by about 4.47 likes from the mean of 8 likes.

Properties of Standard Deviation

- s_{x} is always greater than or equal to 0 .
- Larger values of s_{x} indicate greater variation.
- s_{x} is not a resistant measure of variability.
- s_{x} measures variation about the mean.

7. The value before taking the square root is known as the

$$
\text { Variance } \quad s^{2}=\frac{1}{n-1} \sum\left(x_{i}-\bar{x}\right)^{2}
$$

std.

$$
1>\infty
$$

be sure to read the details on quartiles
pp. 63 to 65

Measuring Variability:
 The Interquartile Range (IQR)

The quartiles of a distribution divide the ordered data set into four groups having roughly the same number of values. To find the quartiles, arrange the data values from smallest to largest and find the median.

The quartiles of a distribution divide the ordered data set into four groups having roughly the same number of values. To find the quartiles, arrange the data values from smallest to largest and find the median.

The quartiles of a distribution divide the ordered data set into four groups having roughly the same number of values. To find the quartiles, arrange the data values from smallest to largest and find the median.

The quartiles of a distribution divide the ordered data set into four groups having roughly the same number of values. To find the quartiles, arrange the data values from smallest to largest and find the median.

The first quartile Q_{1} is the median of the data values that are to the left of the median in the ordered list. The third quartile Q_{3} is the median of the data values that are to the right of the median in the ordered list.

The quartiles of a distribution divide the ordered data set into four groups having roughly the same number of values. To find the quartiles, arrange the data values from smallest to largest and find the median.

The first quartile \mathbf{Q}_{1} is the median of the data values that are to the left of the median in the ordered list.

The third quartile Q_{3} is the median of the data values that are to the right of the median in the ordered list.

The quartiles of a distribution divide the ordered data set into four groups having roughly the same number of values. To find the quartiles, arrange the data values from smallest to largest and find the median.

The first quartile Q_{1} is the median of the data values that are to the left of the median in the ordered list.

The third quartile Q_{3} is the median of the data values that are to the right of the median in the ordered list.

The interquartile range (IQR) is the distance between the first and third quartiles of a distribution. In symbols:
$\mathrm{IQR}=\mathrm{Q}_{3}-\mathrm{Q}_{1}$

The quartiles of a distribution divide the ordered data set into four groups having roughly the same number of values. To find the quartiles, arrange the data values from smallest to largest and find the median.

The first quartile Q_{1} is the median of the data values that are to the left of the median in the ordered list.

The third quartile Q_{3} is the median of the data values that are to the right of the median in the ordered list.

The interquartile range (IQR) is the distance between the first and third quartiles of a distribution. In symbols:

$$
\mathrm{IQR}=\mathrm{Q}_{3}-\mathrm{Q}_{1}
$$

8. Find the Interquartile Range

2	4	5	6	7
8	8	9	15	16

Number of Instagram likes

$I Q R=Q_{3}-Q_{1}=9-5=4$ likes

$$
\begin{aligned}
& \text { Assignment } \\
& 10 S_{\infty} \cdot 87,89,91,95,97,101,
\end{aligned}
$$

Travel times for 20 New Yorkers:

10	30	5	25	40	20	10	15	30	20	15	20	85	15	65	15	60	60	40	45

Travel times for 20 New Yorkers:

10	30	5	25	40	20	10	15	30	20	15	20	85	15	65	15	60	60	40	45
\checkmark																			
5	10	10	15	15	15	15	20	20	20	25	30	30	40	40	45	60	60	65	85

Travel times for 20 New Yorkers:

10	30	5	25	40	20	10	15	30	20	15	20	85	15	65	15	60	60	40	45
\checkmark																			
5	10	10	15	15	15	15	20	20	20	25	30	30	40	40	45	60	60	65	85

Travel times for 20 New Yorkers:

Travel times for 20 New Yorkers:

Travel times for 20 New Yorkers:

Interpretation: The range of the middle half of travel times for the New Yorkers in the sample is 27.5 minutes.
8. Find the Interguartile Range

