1.

$(14,10)$ and $(-7,1)$
slow
$y=\frac{3}{7} x+4=$
$m=\frac{10-1}{14-7}$

$$
m=9
$$

1.
$(14,10)$ and $(-7,1)$
slope

$$
m=\frac{-}{-}
$$

find b using

$$
y=m x+b
$$

$$
\begin{aligned}
& \text { 2. }(8,-1) \text { and }(2,7) \\
& m=\frac{-1-7}{8-2} \\
& =\frac{-8^{4}}{b_{3}} \\
& =-\frac{4}{3} \\
& y=m x+b \\
& 7=\frac{-4}{3}\left(\frac{2}{1}\right)+b\left(\begin{array}{c}
a \\
y \\
x \\
x
\end{array}\right) \\
& 77^{3}=-\frac{8}{3}+b_{0} \quad x \\
& 21=-8+3 b \\
& 29=3 b \\
& \text { - }=\frac{29}{3}
\end{aligned}
$$

HW Questions ?
let's go over \#86

$$
86 \quad \mathbf{f}(\mathbf{x})=\sqrt{\mathbf{x}}-\mathbf{2} \quad \text { 2) endpoint of }(0,-2)
$$

$$
\begin{array}{l|l}
x & y \\
\hline 0 & -2
\end{array}
$$

$$
\text { domain : } 0 \leq x<\begin{array}{l|l|l|l|l|}
\hline \text { d } & 0 & 5 & 10 \\
\hline
\end{array}
$$

$$
\text { ranges }-2 \leq y<\infty
$$

—>

5. End behavior

$$
\text { as } x \rightarrow \infty, y \rightarrow \infty
$$

6. Intercepts

$$
(0,-2)
$$

$$
(4,0)
$$

84 find intersection between

$$
\begin{aligned}
& f(x)=\frac{2 x^{2}-3 x+4}{} \text { and } g(x)=x^{2}+5 x-3 \\
& 2 x^{2}-3 x+4=x^{2}+5 x-3 \\
& x^{2}-8 x+7=0 \\
& (x-7)(x-1)=0 \\
& a \cdot b=0 \\
& x-7=0 \quad x-1=0 \\
& x=7 \quad x=1
\end{aligned}
$$

$$
y=3 x-6
$$

(b) $y=2 x^{2}+4$

91
A) $\begin{aligned} & y=m x \\ & y=b \\ &-b\end{aligned}$
$y-b=m x$
$x=\frac{y-b}{m}$

$$
x=\frac{y}{m}-\frac{b}{y}
$$

B)

$$
A=\pi r_{\uparrow}^{2}
$$

c) $V=\underset{L}{W} T$

d) $2 x+\frac{1}{y}=3$

$$
93 y=\underbrace{3 x+15} \quad y=3-3 x \quad \underbrace{\text { find }}_{1}
$$

c) Write an equation that does not contain y and solve it for x.

$$
3 x+15=3-3 x
$$

d) Use the x-value you found to find the corresponding y - value
$95 \quad h(x)=x^{2}-5$
find x-intercepts

97 MATCHING

a. $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \nwarrow$
b. $\frac{\sin A}{a}=\frac{\sin B}{b}$

c. $c^{2}=a^{2}+b^{2}$
d. $c^{2}=a^{2}+b^{2}-2 a b \cos C$

1. Law of Cosines
2. Law of Sines
3. Pythagorean Theorem
4. Quadratic Formula

Learning is always
easier if one can initially make a connection to what you already know

\square

$$
\begin{aligned}
& y=m x+b \quad y=3 x+2 \\
& x \text { and } y ? \quad m \text { and } b \\
& \text { a } \quad \text { ? } \quad y \quad \hat{i} \\
& \text { inputs outputs constants }
\end{aligned}
$$

What effect does m have? b ?

Point to the parameters

$$
y=m_{\uparrow} x+b \quad y=\frac{1}{x-h} \quad y=a x^{2}+b x+c
$$

c) Parameters

$$
y=\operatorname{m}_{\uparrow} x+b_{\uparrow} \quad y=\frac{1}{x-h} \quad y=\underset{\tau}{a} x^{2}+\underset{\tau}{b} x+c
$$

What do all functions
in the family

have in common

a) decide as a group if it is linear ${ }^{\text {try }}$ to
b) If linear, find the equation.

With each situation:

(1) -- start by writing down the given information (or briefly abbreviating the info if in paragraph form).
(2) -- Discuss how you decided if it was linear
or not.

3 -- If linear, write the linear equation. If not, move to the next question.
a. Pieces of \mid Grams

Bread	of Fiber
0	0
1	5
2	10
3	15
4	20

b.

Killer Fried Chickens charges $\$ 7.00$ for a basic bucket of chicken and $\$ 0.50$ for each additional piece. The input is the number of extra pieces of chicken ordered, and the output is the total cost of the order.

C.

$$
Y=-x+10
$$

d.

x	y
10	1
5	2
4	2.5
2	5
1	10
0.5	20

e. James planted a bush in his yard. The year he planted it, the bush produced 17 flowers. Each year, the branches of the bush split, so the number of flowers doubles. The input is the year after planting, and the output is the number of flowers.

f.

x	y
0	-7
2	$)^{2}$
4	-2
6	3
6	8
8	13

$L \subset Q$
blank piece of paper

Decide if the relationship is linear.

Assignment

1104 to 110

