luestions on Homework

PICK UP Warm UP

Warm

With each function: underline if its a linear function, circle if its an exponential function and leave blank if it is neither

$$f(x) = 5(2)^{x}$$

$$f(x) = 3x^{2}$$

$$f(x) = 3x - 2$$

$$f(x) = 5(2)^{x}$$
 $f(x) = 3x^{2}$ $f(x) = 3x-2$ $f(x) = 3(4)^{x}$
 $f(x) = 3+5(x-1)$ $f(x) = 1.2^{x}$ $f(x) = 3(1)^{x}$ $y = 7x$

Check

Today's Goals

- 1. Write recursive formulas for sequences.
- 2. Exponential Function Basics

recursive

Explicit formulas can generate any term in the sequence.

Recursive formulas show how to produce the next term from a known term.

> What is the sequence doing over and over again?

Recursive formulas are used in computer programming

Pick up the handout

Question #1 Write a sequence formula for each: explicit to the product of the

$$6, 12, 24, 48, \dots$$
 $t_n = (2)^{n-1}$

$$\begin{cases} t_1 = 6 \\ t_{n+1} = 2t_n \end{cases}$$

$$-L_n = 90\left(\frac{1}{3}\right)^n$$

Question #2

In a new sequence, what does the following mean? $\pm (32) = 1800$

Question #3

Determine whether 530 is a term of the sequence t(n) = 8 + 6n

Question #4

Given the recursive sequence below, list the first 5 terms of the sequence

$$\begin{cases} t_1 = 3 \\ t_{n+1} = 5 t_n - 1 \end{cases}$$

$$\frac{3}{0} \stackrel{14}{\otimes} \frac{69}{3}$$

$$n=1 \quad \text{te} = 5(3)-1 = 14$$

$$n=2 \quad \text{t}_3 = 5(14)-1 = 69$$

$$n=3 \quad \text{t}_4 = 5(69)-1 = 15$$

$$t_5 = 5(944)-1 = 15$$

Question #5

Write the first few terms of each sequence. Then identify each sequence as arithmetic, geometric or neither.

Question #6

Mystery sequence

clues:

$$t(5) = 32$$
 and $t(11) = 56$

$$t(11) = 56$$

find the arithmetic sequence

$$\frac{32}{0}$$

Consider taping these notes into yours.

Notes

Exponential Functions

Appendex B

Pull out your Reference Sheet

Get your GDC ready

$$y = 1 (2)^{x}$$

$$y = 1 (123)^{x}$$

$$y = 1 (123)^{x}$$

$$y = 1 (035)^{x}$$

$$y = 1 (23)^{x}$$

$$y = 2^{x} + 5$$

$$y = 5$$

but not all exponentials are basic

A Sketch
$$y = 8 \left(\frac{3}{3}\right)^{x} - 4$$

Find the y-intercept analytically.

$$y = 3(2)$$

Graph and find the y-intercept.

any one need to leave? (have not taken test)

$$(6)^2 (-6)^2 - (6)^2 - 6$$

$$\frac{-4}{10} \qquad \frac{4}{-10} \qquad -\frac{4}{10} \qquad -\frac{2}{5}$$
best \odot

Solve for
$$n$$

$$M = \sqrt{n+3}$$

So many made this too hard !!

(X=7 Calculate both the x- and y- intercepts for 2x + 3y = 6 and show how this can be done using algebra for full credit (other methods partial credit)

5et x 20

Set y =0

$$x = 3$$

 $\frac{\sqrt{x-intercept(s)}}{x-intercept(s)}$: (3,0)

Assignment Appendix

A....24, 56, 78, 83, 99, 100

Exponent Review

Boot camp

Manipulating Powers

[MATE POWED]

$$1) (a^x)^y = a^{xy}$$

$$4) (ab)^x = a^x b^x$$

7)
$$\frac{1}{a^{-x}} = a^x$$

$$2) \ a^x \cdot a^y = a^{x+y}$$

$$5) \left(\frac{a}{b}\right)^{x} = \frac{a^{x}}{b^{x}}$$

3)
$$\frac{a^x}{a^y} = a^{x-y}$$

6)
$$a^{-x} = \frac{1}{a^x}$$

Handout Manipulating Powers

CAPONOS (

$$1) (a^x)^y = a^{xy}$$

$$4) (ab)^x = a^x b^x$$

7)
$$\frac{1}{a^{-x}} = a^x$$

$$2) a^x \cdot a^y = a^y$$

$$5) \left(\frac{a}{b}\right)^{x} = \frac{a^{x}}{b^{x}}$$

6)
$$a^{-x} = \frac{1}{a^x}$$

Simplify each expression.

Example:
$$(x^2)^4 = x^{2 \cdot 4} = x^8$$

1.
$$x^4 \cdot x^2$$

Use the 2nd law

2.
$$\frac{x^8}{x^6}$$
 =

3.
$$(x^2y)^3 = (x)^3$$

 $\left(\left(\frac{2}{3} \right)^{\frac{3}{2}} \right)$

4.
$$\left(\frac{x}{y^3}\right)^5 = \frac{x}{y^{15}}$$

$$y^{-15} = \frac{1}{y^{15}}$$

$$= \times = \times$$

$$=$$
 $\frac{1}{Q^3}$

8.
$$(2c^2)^3$$

$$2^3 \cdot (c^2)^3 = 8c^6$$

$$9. \frac{1}{N^4} = \frac{N^{10}}{N^{10}} = \frac{1}{N^{10}}$$

10.
$$4a^5 \cdot 3a^3$$

12.
$$(x^{-2})^2$$

$$= \frac{1}{x^4}$$

13.
$$\left(\frac{2}{x}\right)^{-1}$$

Day 2 Appendix Recurssive Sequences	September 25, 2018