Questions on Homework



Warm UP


With each function: underline if its a linear function, circle if its an exponential function and leave blank if it is neither

$$
\begin{gathered}
f(x)=5(2)^{x} \\
f(x)=3+5(x-1)=3 x^{2} \quad \frac{f(x)=3 x-2}{f(x)=1.2^{x}} \frac{f(x)=3(4)^{x}}{f \cdot 9 c k} \\
1^{2}=1 \quad 1^{3}=1 \\
1^{2}=1
\end{gathered}
$$




Today's Goal.

1. Write recursive formulas for sequences.
2. Exponential function Basics

OCCur
recur
recursive

Explicit formulas can generate any term in the sequence.


Recursive formulas show how to produce the next term from a known term.

What is the sequence doing over and over again?

## Recursive formulas are used in computer programming

Notation

$$
\begin{aligned}
& \mathbf{t ( n )} \text { or } t_{n} \quad \begin{array}{l}
\text { the current term } \\
\text { or term of interest }
\end{array}
\end{aligned}
$$

$$
-,-,-, \infty, \infty
$$

## Pick up the handout

## Question \#1

Write a sequence formula for each:

$$
\underbrace{\text { explicit }}_{\text {formulas }}
$$

Zero or first term format
$20,23,26,29 \ldots \ldots . \quad t_{n}=20+3(n-1)$

$$
\left\{\begin{array}{l}
t_{1}=20 \\
t_{n+1}=t_{n}+3
\end{array}\right.
$$

$45,40,35,30 \ldots \ldots$.

$$
t_{n}=20+3(n-1)
$$

$$
\begin{aligned}
& \text { re cursive } \\
& \text { formula }
\end{aligned}
$$



$$
\left\{\begin{array}{l}
t_{1}=45 \\
t_{n+1}=t_{n}-5
\end{array}\right.
$$

$\qquad$

$$
t_{n}=6(2)^{n-1} \quad\left\{\begin{array}{l}
t_{1}=6 \\
t_{n+1}=2 t_{n}
\end{array}\right.
$$

$$
90,30,10, \ldots \ldots \ldots \quad t_{n}=90\left(\frac{1}{3}\right)^{n-1} \quad\left\{\begin{array}{l}
t_{1}=90 \\
t_{n+1}=\frac{1}{3} t_{n}
\end{array}\right.
$$

Question \#2
In a new sequence, what does the following mean? $\quad t(32)=1800$ the $32^{\text {nd }}$ term is $1800 \quad t_{32}=1800$

Question \#3
Determine whether $\mathbf{5 3 0}$ is a term of the sequence $\boldsymbol{t}(\boldsymbol{n})=\boldsymbol{8}+\boldsymbol{\sigma} \boldsymbol{n}$

$$
\begin{aligned}
\text { So, } 530 \text { is } 9 \\
\text { term of the } \\
\text { Sequence }
\end{aligned} \quad \begin{aligned}
530 & =8+6 n \\
522 & =6 n \\
n & =87
\end{aligned}
$$

## Question \#4

Given the recursive sequence below, list the first 5 terms of the sequence

$$
\left\{\begin{array}{lll}
\mathbf{t}_{\mathbf{1}}=\mathbf{3} & \frac{3}{(1)} \frac{14}{(2)} \frac{69}{(3)} \frac{344}{(4)} \frac{1,79}{(5)} \\
\mathbf{t}_{\mathbf{n}+\mathbf{1}}=\mathbf{5} \mathbf{t}_{\mathbf{n}}-\mathbf{1} & t_{1} & t_{2}
\end{array}, \begin{array}{l}
n=1 \quad t_{2}=5(3)-1=14 \\
n=2 \quad t_{3}=5(4)-1=69 \\
n=3 t_{4}=5(69)-1= \\
t_{5}=5(344)-1=
\end{array}\right.
$$

## Question \#5

Write the first few terms of each sequence. Then identify each sequence as arithmetic, geometric or neither.

\#2


Question \#6 Mystery sequence
clues: $\quad t(5)=32$ and $t(11)=56$
find the arithmetic sequence

$$
\left.\frac{-1}{(1)},-,-\frac{32}{(5)}\right)-,-,-1-, \frac{56}{(11)}
$$

Consider taping these notes into yours.
$\square$

Exponential Functions

Appendix B

Pull out your Reference Sheet

$\square$




$\rightarrow$ initial value of an exponential situation
$\rightarrow y$-intercept of its graph
$\square$
Sketch $y=2(3)^{x}+5$
$-\ldots-\ldots-\ldots$

* Sketch $y=8\left(\frac{2}{3}\right)^{x}-4$


Find the $y$-intercept analytically.

$$
y=3(2)^{x}
$$

Graph and find the y-intercept.

Some common
issues I noticed on the test
anyone need to leave?
(have not taken test)

$$
\begin{aligned}
& (x-4)^{2}=25 \\
& \downarrow \\
& N O T \\
& x^{2}-16=25
\end{aligned}
$$

$(6)^{2} \quad(-6)^{2} \quad-(6)^{2} \quad-6^{2}$

$$
\begin{array}{llll}
\frac{-4}{10} & \frac{4}{-10} & -\frac{4}{10} & \cdots>
\end{array} \frac{-\frac{2}{5}}{\text { best }}
$$



$$
m=\sqrt{n+3}
$$

So many made this too hard!!?
5. Calculate both the x - and y - intercepts for $2 x+3 y=6$ and show how this can be done using algebra for full credit (other methods partial credit)
$\operatorname{set} x=0$


Set $y=0$

$$
2 x=6
$$

$$
x=3
$$

(3,0)

Seeing your test

$$
\begin{aligned}
& V=1 \text { mark } \\
& \checkmark v=2 \text { marks } \\
& \checkmark v v=3 \text { marks } \\
& \checkmark v v=4 \text { marks }
\end{aligned}
$$

etc $G S=$ See the Solutions


You did the correct thing on this problem even though you used the incorrect answer from the previous problem. (so I am not marking this

## Assignment Appendix

$$
\text { A....24, 56, 78, 83, 99, } 100
$$

## Exponent Review

Boot camp

Manipulating Powers

| 1) $\left(a^{x}\right)^{y}=a^{x y}$ | 4) $(a b)^{x}=a^{x} b^{x}$ | 7) $\frac{1}{a^{-x}}=a^{x}$ |
| :--- | :--- | :--- |
| 2) $a^{x} \cdot a^{y}=a^{x+y}$ | 5) $\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}$ |  |
| 3) $\frac{a^{x}}{a^{y}}=a^{x-y}$ | () $a^{-x}=\frac{1}{a^{x}}$ |  |

## Handout Manipulating Powers

| 1) $\left(a^{x}\right)^{y}=a^{x y}$ | 4) $(a b)^{x}=a^{x} b^{x}$ | 7) $\frac{1}{a^{-x}}=a^{x}$ |
| :--- | :--- | :--- |
| 2) $a^{x} \cdot a^{y}=a^{x+y}$ | 5) $\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}$ |  |
| 3) $\frac{a^{x}}{a^{y}}=a^{x-y}$ | 6) $a^{-x}=\frac{1}{a^{x}}$ |  |

Simplify each expression.
Example: $\left(x^{2}\right)^{4}=x^{2.4}=x^{8}$

1. $x^{4} \cdot x^{2}$ use the $2^{\text {ne }}$ aus.


2. $\left(2 c^{2}\right)^{3}$

$$
2^{3} \cdot\left(c^{2}\right)^{3}=8 c^{6}
$$

10. $4 a^{5} \cdot 3 a^{3}$

11. $\frac{n^{4} n^{4} \cdot n^{6} n^{4}}{n^{8} \cdot n^{2}}=\frac{n^{10}}{n^{10}}=$
12. $\left(\frac{v}{3}\right)^{4} \cdot\left(\frac{5}{v}\right)^{2}$

$$
\begin{aligned}
& v^{2} \frac{Y^{4}}{\delta^{4}} \cdot \frac{25}{X^{x}} \\
& =\frac{25 v^{2}}{81}
\end{aligned}
$$

12. $\left(x^{-2}\right)^{2}$


$$
=\frac{1}{x^{4}}
$$

13. $\left(\frac{2}{x}\right)^{-1}$

