EXERCISE 11A

- (1)
- a weak positive correlation, linear, no outliers
- b strong negative correlation, linear, one outlier
- no correlation
- d strong negative correlation, not linear, one outlier
- e moderate positive correlation, linear, no outliers
- f weak positive correlation, not linear, no outliers

(2) i

- b There appears to be strong, positive, linear correlation between Judge A's scores and Judge B's scores. This means that as Judge A's scores increase, Judge B's scores increase.
- No, the scores are related to the quality of the ice-skaters' performances.

3)

- b There is a strong, negative, linear correlation between Mathematics and Art marks.
- 4
- a D
- b A
- В
- d C
- There is a moderate, positive, linear correlation between hours of study and marks obtained.
 - **b** The test is out of 50 marks, so the outlier (> 50) appears to be an error. It should be discarded.
- (6) a Not causal, dependent on genetics and/or age.
 - Not causal, dependent on the size of the fire.
 - d Causal e Not causal, dependent on population of town.

EXERCISE 11B.1

1) weak positive correlation
2 a B b A

c D

ii $r \approx 0.786$

iii moderate positive correlation

- 1

ii r = -1

iii perfect negative correlation

ı

ii $r \approx 0.146$

iii weak positive correlation

b $r \approx 0.816$

moderate positive correlation

 $r \approx 0.917$

strong positive correlation.

In general, the greater the young athlete's age, the further they can throw a discus.

negative

 $r \approx -0.911$

d strong negative correlation

decreases

f yes

EXERCISE 11B.2

(1) a $\overline{x}=6$, $\overline{y}=6$

ь	\boldsymbol{x}	y	$x-\overline{x}$	$y - \overline{y}$	$(x-\overline{x})(y-\overline{y})$	$(x-\overline{x})^2$	$(y-\overline{y})^2$
	2	10	-4	4	-16	16	16
	4	7	-2	1	-2	4	1
	7	5	1	-1	-1	1	1
	11	2	5	-4	-20	25	16
otals:	24	24	0	0	-39	46	34

 $r \approx -0.986$

- a r=1, the data is perfectly positively linearly correlated.
 - **b** r=-1, the data is perfectly negatively linearly correlated.
 - r = 0, there is no correlation.

3 a

- b $r \approx 0.881$
- c strong positive correlation

EXERCISE 11B.3

- 1 57.8% of the variation in the number of visitors can be explained by the variation in maximum temperture.
- $r^2 \approx 0.224$. 22.4% of the variation in money lost can be explained by the variation in time spent gambling.
- $r^2 \approx 0.133$. 13.3% of the variation in heart rate can be explained by the variation in age.

4

b $r^2 \approx 0.904$. 90.4% of the variation in tread depth can be explained by the variation in number of kilometres travelled.

EXERCISE 11C

- **b** $r \approx 0.929$
- There is a strong positive correlation between weight and pulse rate.
- **d** (60, 64.6)
- f 68 beats per minute. This is an interpolation, so the estimate is reliable.

- There is a strong negative correlation between number of speed cameras and number of car accidents.
- e At $y \approx 52$. This means that we would expect a city with no speed cameras to have approximately 52 car accidents.

b (20, 22) c moderate height, and thinner. d (45, 15.7)
 f ≈ 37.4 m. This is an extrapolation, so the prediction may not be reliable.

- b $r \approx 0.921$
- There is a strong, positive, linear association between the starting salaries for Bachelor degrees and the starting salaries for PhDs.
- d $y \approx 3.44x 78300$
- e i \$59300
 - ii This is an interpolation, so the prediction is likely to be reliable.

- b $r \approx -0.219$
- There is a weak negative correlation between temperature and time.
- d No, as there is almost no correlation.

- $r \approx -0.924$
 - **b** There is a strong, negative, linear correlation between the petrol price and the number of customers.
 - $y \approx -4.27x + 489$
 - **d** gradient ≈ -4.27 , for every 1 cent per litre increase in the price of petrol, a service station will lose 4.27 customers.
 - e −5.10 customers
 - f It is impossible to have a negative number of customers. This extrapolation is not valid.

- b $r \approx 0.840$
- moderate positive linear correlation
- d $y \approx 8.12x + 6.09$
- e 11.0 km

- b $r \approx -0.927$
- c There is a strong negative linear correlation between time exercising and time watching television.
- d $y \approx -2.13x + 22.1$
- e gradient ≈ -2.13 , for every hour the children spend exercising, they watch 2.13 hours less television. y-intercept ≈ 22.1 We would expect a child who does not exercise at all to watch 22.1 hours of television per week.
- f 11.5 hours each week

f

 $r \approx 0.798$

ii $r \approx 0.993$

 $y \approx 0.0672x + 2.22$

ii $y \approx 0.119x + 1.32$

d The one which excludes the outlier.

e Too much fertiliser often kills the plants, or makes them sick.

EXERCISE 11E.1

\mathbf{Q}	ノ

	Likes chicken	Dislikes chicken	sum
Likes fish	45	15	60
Dislikes fish	30	10	40
sum	75	25	100

Ь		Drove to work	Cycled to work	Public transport	sum
	Male	25.3	7.7	11	44
	Female	20.7	6.3	9	36
	sum	46	14	20	80

c			Middle school		sum
	Plays sport	38.28	56.76	69.96	165
	Does not play sport	19.72	29.24	36.04	85
	sum	58	86	106	250

d		Wore hat and sunscreen	Wore hat or sunscreen	Wore neither	sum
	Sunburnt	10.92	6.16	3.92	21
	Not sunburnt	28.08	15.84	10.08	54
	sum	39	22	14	75

2 a

	Pass Maths test	Fail Maths test	sum
Male	30	20	50
Female	30	20	50
sum	60	40	100

b In a sample of 100 students, we would expect 30 to be male and pass the Maths test.

c	f_o	f_e	$f_o - f_e$	$(f_o - f_e)^2$	$\frac{(f_o - f_e)^2}{f_e}$
	24	30	-6	36	1.2
	26 36	20 30	6	36 36	1.8 1.2
	14	20	-6	36	1.8
				Total	6

$$\chi^2_{calc}=6$$

	Likes football	Dislikes football	sum
Male	14.56	11.44	26
Female	13.44	10.56	24
sum	28	22	50

ii
$$\chi^2_{calc} \approx 13.5$$

		Full-time job	Part-time job	Unemployed	sum
	Left handed	16	14	10	40
	Right handed	144	126	90	360
I	sum	160	140	100	400

ii
$$\chi^2_{calc} \approx 1.05$$

Age

	18 - 29	30 - 39	40+	sum
Married	13.99	15.67	17.35	47
Single	11.01	12.33	13.65	37
sum	25	28	31	84

ii
$$\chi^2_{calc} \approx 4.35$$

d

Visits Art Gallery

Visits Museum

		Often	Rarely	Never	sum
1	Often	37.60	37.95	35.45	111
	Rarely	36.58	36.93	34.49	108
	Never	30.82	31.12	29.06	91
	sum	105	106	99	310

ii
$$\chi^2_{calc} \approx 25.1$$

EXERCISE 11E.2

- $1 \chi^2_{calc} \approx 6.61, \quad \mathrm{df} = 2, \quad p \approx 0.0368$
 - As $\chi^2_{calc} > 5.99$, we reject H_0 , and conclude that the variables weight and suffering diabetes are not independent.
- 2 a 4.61
 - b $\chi^2_{calc} \approx 8.58$, df = 2, $p \approx 0.0137$ As $\chi^2_{calc} > 4.61$, we reject H_0 . So at a 10% level, we conclude that age and the party to vote for are not independent.
- - As χ^2_{calc} < 11.34, we do not reject H_0 . So at a 1% level, gender and favourite season are independent.
 - a $\chi^2_{calc} \approx 23.6$, df = 3, $p \approx 0.000\,029\,9$ As $\chi^2_{calc} > 7.81$, we reject H_0 . So at a 5% level, reason for travelling and rating are not independent.
 - **b** Guests travelling for a holiday are more likely to give a higher rating.
 - $\boxed{\mathbf{5}} \; \chi^2_{calc} \approx 18.4, \quad \mathrm{df} = 6, \quad p \approx 0.005\,28$
 - As $\chi^2_{calc} > 12.59$, we reject H_0 . So at a 5% level, hair colour and eye colour are not independent.
 - **6** $\chi^2_{calc} \approx 7.94$, df = 6, $p \approx 0.242$
 - As $\chi^2_{calc} < 10.64$, we do not reject H_0 . So at a 10% level, position and initry type are independent.

EXERCISE 11E.3

	Own a pet?			
	Yes	No	sum	
9	4.02	3.98	8	
0	97.1	26.0	E 4	

b Yes, 4.02 and 3.98.

		Yes	No	sum
	0 - 19	4.02	3.98	8
100	20 - 29	27.1	26.9	54
Age	30 - 49	50.2	49.8	100
	50+	36.7	36.3	73
	sum	118	117	235

c Combine the 0 - 19 and 20 - 29 rows.

(2) a $\chi^2_{calc} \approx 16.9$, df = 6, p = 0.00959As $\chi^2_{calc} > 16.81$, we reject H_0 . So at a 1% level, we conclude that intelligence level and cigarette smoking are not independent.

Intelligence level

	low	average	high	very high	sum
Non smoker	262	383	114	4.69	763
Medium level smoker	133	194	57.7	2.38	387
Heavy smoker	107	157	46.6	1.93	313
sum	502	734	218	9	1463

- c Combine the high and very high data columns.

d $\chi^2_{calc}\approx$ 13.2, df = 4, p=0.0104As $\chi^2_{calc}<$ 13.28, we do not reject H_0 . So at a 1% level, intelligence level and cigarette smoking are independent. This is a different conclusion from the one in a.

EXERCISE 11E.4

Gu

		Heads	Tails	sum
1000	Heads	49.4	54.6	104
iess	Tails	45.6	50.4	96
	sum	95	105	200

- b $\chi^2_{calc} \approx 1.35$
- As $\chi^2_{calc} < 3.84$, we do not reject H_0 . So at a 5% level, Horace's guess and result are independent.
- d According to this test, Horace's claim is not valid.

D	-		7
I_{Λ}	es	и	и

Country

	Pass	ган	sum
France	63.8	21.2	85
Germany	168	55.8	224
sum	232	77	309

- **b** 2.71
- $\chi^2_{calc} pprox 4.62$
- **d** As $\chi^2_{calc} > 2.71$, we reject H_0 . So at a 10% level, motorbike test result and country are not independent.

- b $r \approx -0.928$, a strong negative linear relationship exists between the variables.
- d = -1.64T + 82.3 d 50.0°C
- $\chi^2_{calc} \approx 7.37$, df = 2, $p \approx 0.0251$

As $\chi^2_{calc} > 5.99$ we reject H_0 . So, at a 5% level, wearing a seat belt and severity of injury are not independent.

- $r \approx 0.994$
- There is a very strong positive correlation between area and price.
- d $y \approx 0.0335x + 3.27$
- \$43.42, this is an extrapolation, so it may be unreliable.

- **b** (13.3, 57.1)
- d There is a moderate positive linear correlation between time in the store and money spent.
- €66.80. This is an interpolation, so the estimate is reliable.

- **b** Yes, the point (1.7, 597) is an outlier. It should not be deleted as there is no evidence that it is a mistake.
- $s \approx -116p + 665$
- d No, the prediction would not be accurate, as that much extrapolation is unreliable.

- $\stackrel{6}{\longrightarrow}$ a number of waterings, n
- **b** $f \approx 34.0n + 19.3$
- Yes, plants need water to grow, so it is expected that an increase in watering will result in an increase in flowers.

- i 104 (n = 2.5), 359 (n = 10)
 - ii n = 10 is unreliable as it is outside the poles and over watering could be a problem. n = 2.5 is reliable.
- $(7) \chi^2_{calc} \approx 13.0, df = 6, p \approx 0.0433$
 - a As $\chi^2_{calc} > 12.59$, we reject H_0 . So, at a 5% level, Pand Q are not independent.
 - **b** As $\chi^2_{calc} < 16.81$, we do not reject H_0 . So, at a 1% level, P and Q are independent.

REVIEW SET 11B

(1) a

- b $r \approx -0.908$
- $n \approx -0.0284I + 4.12$
- 2.84 children
- ii 0.144 children
- e The first is interpolation, so the estimate is reliable. The second is extrapolation, so the estimate may not be reliable.
- Negative correlation. As prices increase, the number of tickets sold is likely to decrease.
 - ii Causal. Less people will be able to afford tickets as the prices increase.
- Positive correlation. As icecream sales increase, number of drownings is likely to increase.
 - ii Not causal. Both these variables are dependent on the number of people at the beach.

- (3) $\chi^2_{calc} \approx 42.1$, df = 2, $p \approx 7.37 \times 10^{-10}$ As $\chi^2_{calc} > 4.61$, we reject H_0 . So at a 10% level, age of driver and increasing the speed limit are not independent.
- $\chi^2_{calc} \approx 25.6$, df = 9, $p \approx 0.00241$ As $\chi^2_{calc} > 21.67$, we reject H_0 . So at a 1% level, intelligence level and business success are not independent.

- **b** $t \approx 0.0322v + 0.906$
 - i 2.68 seconds ii 4.44 seconds
- d The driver's reaction time.

- **b** $r \approx -0.706p + 13.5$ dozen maidens
- $r \approx -0.763$. There is a moderate negative relationship. This supports Superman's suspicions.
- **d** 9.25 dozen (111 maidens)
- This would predict that Silent Predator would abduct a negative number of maidens, which is unrealistic.
- f r-int ≈ 13.5 , p-int ≈ 19.1 These represent how many dozen maidens we would expect one villain to abduct if the other villain did not abduct any.
- g Silent Predator

f August 01, 2016

f August 01, 2016

≈