Dick up the Warm Up

HW Questions...-youknow what to do.
$\sqrt{1}$ Sketch, without a GDC,

$$
y=\frac{1}{4}(x-5)^{2}+1
$$

$$
\begin{aligned}
& y=(x-5) \\
& y=x-5
\end{aligned}
$$

Would the same strategy work
with a line?
Try sliding the line you sketched the right.
$y=x$ would become $y=$ \qquad

X
(4) Try sliding the line $y=3(x)+2$ four units

$$
y=3(x+4)+2
$$

5] Two points $(-1,2)$ and $(2,8)$ form a segment. Find the length of the segment.

$$
\begin{aligned}
& d^{2}=3^{2}+6^{2} \\
& d^{2}=9+36 \\
& a^{2}=45 \\
& \sqrt{a}=\sqrt{45}
\end{aligned}
$$

(6) Now find the equation of the straight line of the straight that pusses through the two points.
$(-1,2)$ and $(2,8)$

$$
\begin{gathered}
y=\max _{1} x+\frac{b}{2} \\
y=2_{n}+b \\
8=2(2)+b \\
8=4+b \\
b=4
\end{gathered}
$$

$$
m=\frac{8-2}{2--1}
$$

$$
\begin{aligned}
& m=\frac{8-2}{2--1} \quad 4 \geqslant x_{x} \\
& m=6
\end{aligned}
$$

$\left.(b) \begin{array}{c}(0,7) \\ 1\end{array}\right)$

(c) $(0,0)$

(d) $(1,0)$
(e) $(7,6)$
(f) $(-3,-8)$

Three forms of Quadratic Equations
standard form

$$
y=a x^{2}+b x+c
$$

y-intercept
graphing form

$$
\begin{aligned}
& y=a(x-h)^{2}+k \\
& \begin{array}{c}
y=1(x+4)^{2}-6 \\
\text { where }(h, k) \text { is } \\
\text { the vertex }
\end{array} \\
& (-4,-6) \text { is the } \\
& \text { vertex }
\end{aligned}
$$

$$
y=3 x^{2}+2 x-5
$$

$$
y=a(x+d)(x+e)
$$

x-intercepts are

Each function form has its equation equivalent.

$$
\begin{gathered}
3 x^{2}+2 x-6=0 \\
\frac{1}{2}(x-7)(x+2)=0 \\
(2 x-3)^{2}=16
\end{gathered}
$$

 graphing form by COMPLETING THE SQUARE

$$
\begin{array}{r}
y=x^{2}+6 x-5 \\
\quad \underset{y=(x+3)^{2}-14}{ }
\end{array}
$$

The technique:

$$
\begin{aligned}
& y=x^{2}+6 x-5+9 \\
& y+9=\begin{array}{|l|l|}
\hline \begin{array}{|l|l|}
\hline x^{2} & 3 x \\
\hline 3 x & 9 \\
\hline
\end{array} & -5
\end{array} \\
& y+9=(x+3)^{2}-5 \\
& \underset{\text { Gore }}{\text { Graphing }} y=(x+3)^{2}-14
\end{aligned}
$$

$$
\begin{aligned}
& \text { The technique: } \\
& y=x^{2}+6 x-5 \\
& y=\begin{array}{|l|l|}
\hline x & x^{2} \\
\hline 3 x \\
\hline x & 9 \pi \\
\hline
\end{array}-5-9 \\
& \text { Since } 3 x \cdot 3 x=9 x^{2} \\
& y=(x+3)(x+3)-14
\end{aligned}
$$

Convert, find vertex, then sketch

$$
\begin{aligned}
& f(x)=x^{2}-4 x+9 \\
& f(x)+4=\begin{array}{|c|c|c|}
\hline x & \begin{array}{l}
x \\
x^{2}
\end{array}-2 x \\
-2 & -2 x & 4 \\
\hline
\end{array}+9 \\
& -\frac{4 x}{2}=-2 x \\
& -2 x \cdot-2 x=4 x^{2} \\
& f(x)+4=(x-2)^{2}+9 \quad y \text {-int }(0,9) \\
& f(x)=\underset{\rightarrow}{(x-2)^{2}}+5 \rightarrow \operatorname{Vertex}(2,5)
\end{aligned}
$$

$$
f(x)=(x-2)^{2}+5
$$

y-intercept $?$ axis of symmetry?

$$
\begin{aligned}
& y=x^{2}-2 x-15
\end{aligned}
$$

$$
\begin{aligned}
& y_{-1}^{+1}=(x-1)^{2}-15 \quad y \text {-int }(0,-15) \\
& \underset{\rightarrow}{y=(x-1)^{2}-16} \longrightarrow \\
& \frac{-2 x}{2}=-x \\
& \text { vertex }(1,-16) \\
& \text { axis of } \\
& x=1
\end{aligned}
$$

Use your graphing calculator to verify that they are equivalent

$$
\begin{aligned}
& y_{1}=x^{2}-2 x-15 \\
& y_{2}=(x-1)^{2}-16
\end{aligned}
$$

\square
notes: find the x-intercepts of a parabola when the x -intercepts really suck
$y=x^{2}+8 x+10$
$0=x^{2}+8 x+10$
$a=$
$b=$
$c=$

$$
\begin{aligned}
& \begin{array}{l}
a=1 \\
b=8 \\
c=10
\end{array} \quad x=\frac{-(8) \pm \sqrt{(8)^{2}-4(1)(10)}}{2(1)} \\
& x=\frac{-8 \pm \sqrt{24}}{2} x=-1.55 \\
& x=-6.45
\end{aligned}
$$

See your Exit Ticket

FYI
You wont always be told ahead of time when there will be an Exit Ticket.

Assignment
 2-..... 50ac, 52, 53a, 55ab 56a
 $$
\text { Mr.C } \longrightarrow \mathrm{pdf}
$$

