1. Get the Solutions
2. Check your work \& with a pen
3. Turn in your assignment and Pick up the Warm Up.

$$
\text { skip } \#_{3}
$$

\qquad
(1) Complete the square to convert to graphing form. Then

$$
\text { a) } y=x^{2}-4 x+9
$$

b) $y=x^{2}+7 x-2$

c) $y=2 x^{2}-16 x+30$ (Hint: The " a " coefficient must be 1)

(2)

Find the distance between $(-7,20)$ and $(3,-5)$ to the nearest 2 decimal places
(3)

(4) sketch the functions with

$$
y=(x-3)^{2}+6
$$

$$
y=-(x+1)^{2}-3
$$

$y=2 x^{2}+4$

(5) Find the x-intercepts; algebraically

$$
y=(x-3)^{2}-1
$$

1. Complete the square to convert $y=4 x^{2}+8 x+7$
to graphing form. Careful since $a \neq 1$. If you were absent last class, get someone to show you their notes or, better yet, have them explain what to do.
$y=4 x^{2}+8 x+7$
divide by 4
$\frac{y}{4}=x^{2}+2 x+\frac{7}{4}$
$y+4=4(x+1)^{2}+1$
-4
convert TO A picture

$\frac{y}{4}+1=$	x^{2}	x
	1	$+\frac{7}{4}$

$$
y=4(x+1)^{2}+3
$$

CONVERT back to
an equation
$4 \frac{y}{4}+1=4(x+1)^{2}+47 / 4$
2. Think about sketching parabolas.
a) Do the sides of a parabola ever curve back like
b) Do the sides of a parabola approach straight vertical lines? In other words, do parabolas have asymptote.

3. Find the $\begin{gathered}\text { x-intercept(s) } \\ \text { (algebraically) }\end{gathered}$ of the parabola $y=2 x^{2}+5 x-12$

$$
\begin{aligned}
& 0=2 x^{2}+5 x-12 \\
& a=1 \\
& b=5 \\
& c=-12
\end{aligned}
$$

$$
\begin{aligned}
& X=\frac{-(5) \pm \sqrt{(5)^{2}-4(1)(-12)}}{2(1)} \\
& X=\frac{-5 \pm \sqrt{73}}{2}
\end{aligned}
$$

4. Remember that exponential functions look like $y=a b^{x}$ Use the double substitution method to find the exponential function that passes through the two points $(-1,40)$ and $(1,36)$

$$
\begin{aligned}
& 40=a b^{-1} \\
& 40=\frac{a}{b^{\prime}} \\
& a=40 b=a b
\end{aligned}
$$

$$
\operatorname{mos}^{2 n y} b+\frac{a}{b}
$$

$$
\begin{aligned}
& 3.6=a b \\
& 3.6=(40 b) b \\
& 3.6=40 b^{2} \\
& b^{2}=\frac{3.6}{40} \\
& r=\sqrt{\frac{36}{10}} \\
& b=0.3
\end{aligned}
$$

$$
3.6=a(.3)
$$

$$
a=\frac{36}{3}=12
$$

AIM Perform Mathematical Modeling with Parabolas

$$
y=x^{2}
$$

start $y=(x)^{2}$

$$
y=a(x-4)^{2}+3
$$

Substitute a point that is Not the venter Flluse (8,0)

$$
\begin{aligned}
\text { Start } y & =x^{2} \\
y & =a(x)^{2}+3
\end{aligned}
$$

$$
\text { I \| vase }\binom{4,0}{x y}
$$

$$
\begin{aligned}
& 0=a(8-4)^{2}+3 \\
& 0=a(4)^{2}+3 \\
& 0=16 a+3 \\
& -3 \\
& -\frac{3}{16}=16 a \\
& a=-\frac{3}{16} \\
& y=-\frac{3}{16}(x-4)^{2}+3
\end{aligned}
$$

$$
\begin{aligned}
& 0=a(4)^{2}+3 \\
& 0=16 a+3 \\
& -3=-3 \\
& -3=\frac{16 a}{16} \\
& a=-\frac{3}{16} \\
& y=-\frac{3}{16} x^{2}+3
\end{aligned}
$$

Standard form: $y=a x^{2}+b x+c$
Graphing form: $y=a(x-h)^{2}+k$
Factored form: $y=a(x+b)(x+c)$.

$$
y=a(x-4)^{2}+3
$$

$$
y=a(x-h)^{2}+k \quad y=a(x-h)^{2}+k
$$

Next....

$$
\begin{gathered}
y=a x^{2} \\
y=a(x-70)^{2}-15 \\
0=a(40-70)^{2}-15 \\
a=\frac{3}{80}
\end{gathered}
$$

$$
y=\left.a k\right|^{2}
$$

$$
y=a x^{2}
$$

$$
y=a(x-2)^{2}
$$

$$
15=a(40-20)^{2}
$$

$$
y=a(x)^{2}-15
$$

$$
0=a(20)^{2}-15
$$

$$
a=\frac{15}{400}
$$

At the skateboard park, the hot new attraction is the U-Dip, a cement structure embedded into the ground. The cross-sectional view of the U-Dip is a parabola that dips 15 feet below the ground. The width at ground level, its widest part, is 40 feet across. Sketch the cross-sectional view of the U Dip, and find an equation of the parabola that models it.

Model:

$$
\begin{aligned}
& y=a(x-20)^{2}-15 \\
& 0=a(40-20)^{2}-15 \\
& 0=a .400-15 \\
& 15=400 a \\
& a=\frac{15}{400}=\frac{3}{80} .0375
\end{aligned}
$$

B.B.

Assignment

2- 66, 72a, 73, 74
$\sqrt{3} \cdot \sqrt{3}$
$\sqrt{3}+\sqrt{3}$
$\sqrt{24}$
$\sqrt{\frac{7}{16}}$
$\frac{\sqrt{250}}{\sqrt{10}}$

