

Given the parent function $f(x)=x^{2}$
carry out the following transformation. $\quad y=(x-3)^{2}$
x
"Vertically stretch by 4, horizontally shift right 3 units and up 1 unit."
a) Sketch the new function
b) Write its equation.

$$
y=4(x-3)^{2}+1
$$

General Equation:

$$
y=a(x-h)^{2}+\frac{k}{\uparrow}
$$

$$
\left.2 \cdot \cos \left(-\frac{3 \pi}{4}\right)=-\frac{\sqrt{2}}{2}\right) \quad \tan \left(\frac{\pi}{6}\right)=\frac{\sin \left(\frac{\pi}{6}\right)}{\cos (\pi / 6)}=
$$

$y=\tan (\theta)$

y is the height at the given angle of rotation.

y is the horizontal base length at the given angle of rotation.

y is the slope at the given angle of rotation.
angle

Next Week- Thu/Feb 8 Closure 1

Fri/Feb $9 \quad$ Closure $2+\begin{gathered}\text { Part } \cdot \text { ch } 7 \text { Test } \\ \text { (no calculat or })\end{gathered}$

Mon/Feb 12 Part 2 - Ch 7 Test

HW Questions

HW Questions

HW
Questions
(1) Without vsing a G
a) $\cos \left(\frac{5 \pi}{4}\right)=\frac{-\sqrt{2}}{2}$
b) $\quad \sin \left(-\frac{15 \pi}{6}\right)=-1$

$$
\frac{7 \pi}{3}
$$

a) Any angle that \uparrow starts from $\frac{\pi}{3}$ where you add 2π any number of times.
in aged

$$
\begin{array}{rlrl}
60^{\circ}+360^{\circ} & =420^{\circ} & \text { or } 60-360^{\circ} & =-300^{\circ} \\
420+360^{\circ} & =780^{\circ} & -300-360^{\circ} & =-760^{\circ} \\
780+360^{\circ} & =1040^{\circ} & e+c \\
A+c & &
\end{array}
$$

general $\theta=60^{\circ}+360^{\circ} n$

$$
\theta=\frac{\pi}{3}+2 \pi n \text { (i nradians) }
$$

b) (c) See above

$$
\begin{aligned}
& \left.\sin \left(\frac{7}{3} \pi\right)=\frac{\sqrt{3}}{2}\right) \cos \left(\frac{7}{3} \pi\right)-\frac{1}{2} \\
& \operatorname{tangent} \\
& \tan \left(\frac{7}{3} \pi\right)=\frac{\sin \left(\frac{4}{3} \pi\right)}{\cos \left(\frac{4}{2} \pi\right)}= \\
& \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\frac{\sqrt{3}}{2} \cdot \frac{2}{1}=\sqrt{3}
\end{aligned}
$$

$$
7-105
$$

a) $\sin \left(180^{\circ}\right)=0$

b) $\quad \sin \left(360^{\circ}\right)=0$

c) $\sin \left(-90^{\circ}\right)=-1$

e) $\cos \left(90^{\circ}\right)=0$

f) $\tan (-90)=\frac{\sin \left(-90^{\circ}\right)}{\cos \left(-90^{\circ}\right)}=\frac{-1}{0}=$ =undefinead
$\frac{10 \mathrm{~T}}{\frac{7 \pi}{2} \text { to degrees }}$

$$
810^{2} \times \frac{2 \pi}{360} \simeq
$$

$7-107$ (a) $\frac{7 \pi}{62} \cdot \frac{360^{\circ}}{2 \pi}=\frac{7.60}{2}=210^{\circ}$
(b) $\frac{5 \pi}{3} \cdot \frac{360^{\circ}}{2 \pi k}=\frac{5 \cdot 180}{31}=300^{20}$
(c) $45^{b} \times \frac{2 \pi}{360_{8}^{6}}=\frac{2 \pi}{8}=\pi / 4$
d) $100^{\circ} \times \frac{2 \pi}{\frac{2 \pi}{310^{\circ}}}=\frac{225 \pi}{36}=\frac{5 \pi}{9}$
e) $8100^{\circ} \cdot \frac{2 \pi}{360^{\circ}}=\frac{9}{36} \cdot \frac{2 \pi}{36}=\frac{18 \pi}{4}=\frac{9 \pi}{2}$
f) $\frac{7 \pi}{2} \cdot \frac{360^{\circ}}{24}=630^{\circ}$

7-108
$f(x)=\frac{1}{2}(x+1)^{3}$

$$
x=\frac{1}{2}(y+1)^{3}
$$

$$
2 x=(y+1)^{3}
$$

tabe cube root

$$
\begin{aligned}
& \sqrt[3]{2 x}= y+1 \\
&-1 \\
& y=\sqrt[3]{2 x}-1
\end{aligned}
$$

$$
\begin{array}{r}
7-109 f(x)=2 x^{2}-16 x+34 \\
\frac{f(x)}{2}=\underline{x^{2}-8 x}+17
\end{array}
$$

Add 16 to complete square

$$
\begin{aligned}
& \frac{f(x)}{2}=x^{2}-8 x+16+17-16 \\
& \frac{f(x)}{2}=(x-4)^{2}+1 \\
& f(x)=2(x-4)^{2}+2
\end{aligned}
$$

a) | several methods |
| :--- |
| can use pythag, Idedatity |
| $\sin ^{2} \theta+\cos ^{2} \theta=1$ |
| $\sin ^{2} \theta+\left(\frac{-12}{13}\right)^{2}=1^{2}$ |
| $\sin ^{2} \theta+\frac{144}{169}=1$ |
| $\sin ^{2} \theta=1-\frac{144}{169}$ |
| $\sin ^{2} \theta=\frac{25}{169}$ |
| $\sqrt{2}$ |

$\tan \theta=\frac{\sin \theta}{\cos \theta}$
$\sin \theta= \pm \frac{5}{13}$
$7-110$
a) sean use Byythog, Ideldrity

$$
\sin ^{2} \theta+\cos ^{2} \theta=1
$$

$$
\sin ^{2} \theta+\left(-\frac{12}{13}\right)^{2}=1^{2}
$$

(b)

$$
\sin ^{2} \theta+\frac{144}{168}=1
$$

$$
\sin ^{2} \theta=1-\frac{144}{164}
$$

$$
\sin ^{2} \theta=\frac{25}{169}
$$

$$
r r
$$

$$
\begin{aligned}
& \tan \theta=\frac{\sin \theta}{\cos \theta} \\
& =\frac{\frac{-5}{13}}{-\frac{12}{13}} \\
& =\frac{-5}{13} \cdot \frac{-13}{12}=\frac{5}{12}
\end{aligned}
$$

$$
\sin \theta= \pm \frac{5}{13}
$$

$\cos ^{2} \theta$
$(\cos \theta)^{2}$

$$
\begin{gathered}
\pi 11 \cos \theta=\frac{-12}{13} \\
\cos ^{2} \theta+\sin ^{2} \theta=1 \\
\left(\frac{-181}{13}\right)^{2}+\sin ^{2} \theta=1 \\
\frac{144}{169}+\sin ^{2} \theta=1 \\
\sin ^{2} \theta=1-\frac{144}{169} \\
\frac{169}{169}-\frac{144}{169}
\end{gathered}
$$

Apply the fundamentals of Transformations to Sine and Cosine functions

NOTES

Principle
Axis
(midline)

$$
\mathbf{d}
$$

No
Notes

$$
y=\sin (x)
$$

How would you shift the function up \mathbf{k} units ?
How would you shift the function right h units?
How would you vertically stretch or shrink the function?

General Equation:

$|a|$ amplitude

\square
A) Write an equation for the following transformation and sketch its graph.

$$
y=\sin (x)
$$

A veritical shift, up 2 units \& vertically shrunk by 0.5

(B) $y=\sin (x)$

A reflection across the x-axis and a vertical shift down 2 units

(3) $y=\cos (x)$, Vertically stretched by
1.5 and up 2

if you finish early

try to solve SCREAMER 2

$$
7-119
$$

$$
B B
$$

Today we become Sketch Aptists

d
February 01, 2018

New Sketch - then label intercepts
2 cycles of

$$
y=3 \sin (x)+3
$$

\square

Sketch $y=5 \sin (x)-20$

Sketch $y=\cos \theta+2$

Assignment

> - $2^{\text {nd }}$ assignment for
> new recording sheet.

116-118, 120, 122-124

