HW Questions

Pick up the Warm Up

Reminder:

Test next Wednesday

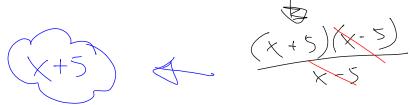
So
$$\infty$$
 $= |5.625|$

$$2\log(x) + \log(4x) = 4$$

$$|og(x^{2}) + |og(4x)| = 4$$

$$|og(x^{2} \cdot 4x)| = 4$$

$$|og(4x^{3}) = 4$$


$$|og(4x^{3}) = 4$$

$$|\chi^{3} = 104$$

$$|\chi^{3} = 2500$$

2. Subtract the rational expressions and simplify

$$\frac{x^2}{x-5} - \frac{25}{x-5} \qquad \qquad \times^2 - 25$$

3. Find the inverse of each of the functions below.

$$j(x) = \frac{2}{3-x} \qquad \qquad \chi = \frac{2}{3-y}$$

$$3x - xy = 2$$

$$-3x$$

$$x(3-y) = 2$$

$$3-y = \frac{2}{x}$$

$$-xy = \frac{2-3x}{-x}$$

$$y = \frac{2}{x}$$

$$-y = \frac{2}{x}$$

$$y = \frac{2}{x}$$

$$y = \frac{2}{x}$$

$$y = \frac{2}{x}$$

$$y = \frac{2}{x}$$

h January 10, 2018

$$\frac{\chi+2}{\chi^{2}-9} - \frac{1}{\chi+3} = \frac{\chi+2}{(\chi+3)(\chi-3)} - \frac{1}{(\chi+3)(\chi-3)}$$

$$\frac{\chi+2}{(\chi+3)(\chi-3)} = \frac{\chi+2-\chi+3}{(\chi+3)(\chi-3)}$$

$$\frac{\chi+2-\chi+3}{(\chi+3)(\chi-3)} = \frac{\chi+2-\chi+3}{(\chi+3)(\chi-3)}$$

6-127. Ryan has the chickenpox! He was told that the number of pockmarks on his body would grow exponentially until his body overcomes the illness. He found that he had 60 pockmarks on November 1, and by November 3 the number had grown to 135. To find out when the first pockmark appeared, he will need to find the exponential function that will model the number of pockmarks based on the day. Homework Help \(^{\sqrt{}}\)

- a. Ryan decides to find the exponential function that passes through the points (3, 135) and (1, 60). Use these points to write the equation of his function of the form $f(x) = ab^x$.
- b. According to your model, what day did Ryan get his first chickenpox pockmark?

According to your moder, what day did Ryan g
$$y = ab^{x} \qquad y = ab^{x}$$

$$y = ab^{x} \qquad y = ab^{x}$$

$$y = ab^{x}$$

$$\frac{135 = 4b^3}{60}$$

$$b^2 = \frac{135}{60}$$

$$b = -\frac{1}{60} \sqrt{\frac{135}{60}}$$

Find the equation of the parabola that passes through the points (-2, 24), (3, -1),and (-1, 15).

(-2,24) $24 = \alpha(-2) + b(-2) + 6$

6-133. Solve each of the following equations for x.

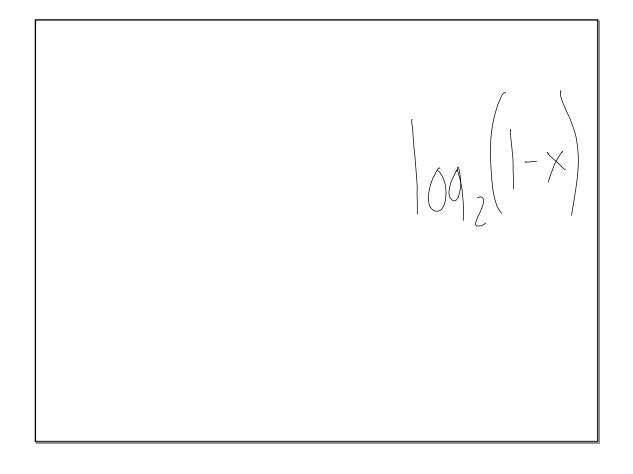
- a. $x^3 = 243$
- b. $3^x = 243$

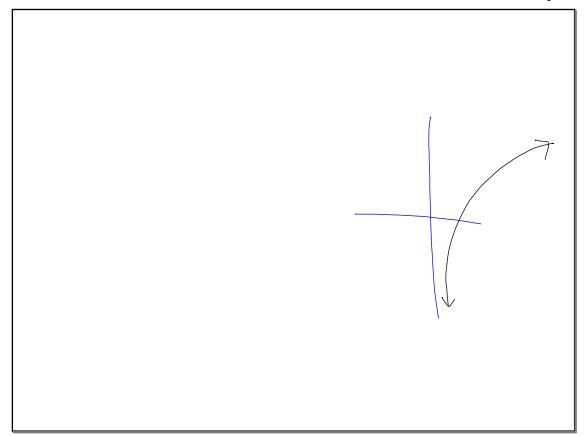
Todayi

Solve a variety of both exponentianal and log equations

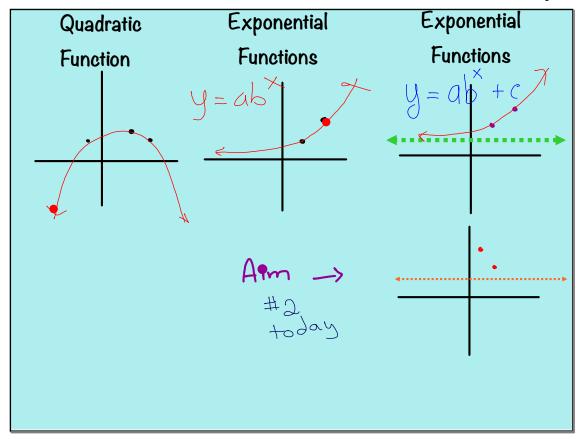
Solve Log Equations

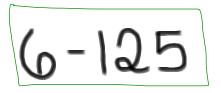
a)
$$log(3n-5) = log(n+1)$$
 $3n-5 = n+1$
 $n=3$


b)
$$16 = 2 \log_2(\frac{3}{x})$$


$$8 = \log_2(\frac{3}{x})$$

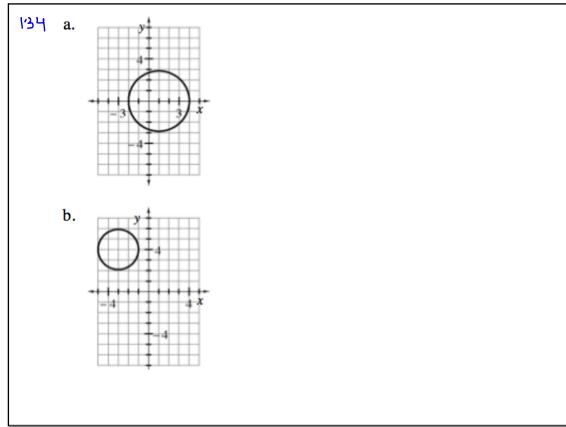
$$8 = \frac{3}{x}$$


$$x = \frac{3}{2^k} = \frac{3}{2^{5k}}$$


c)
$$3 = \log_{2}(x) + \log_{2}(\frac{x}{3})$$

 $3 = \log_{2}(x) + \log_{2}(\frac{x}{3})$
 $3 = \log_{2}(x) + \log_{2}(\frac{x}{3})$




Determine an exponential equation whose asymptote is not y=0

Assignment

Worksheet 6.2.3

6-135. Add or subtra

a.
$$\frac{x^2}{x-5} - \frac{25}{x-5}$$

c.
$$\frac{x^2}{x-y} = \frac{2xy-y^2}{x-y}$$

 $\pmb{6\text{-}136}$. Find the inverse of each of the functions below. V

a.
$$p(x) = 3(x^3 + 6)$$

