Find your new seat (well change again in a few weeks)

Pick up the
WARM UP
(A) Graph the line passing through the point $(2,-3)$ with a slope of $\frac{1}{2}$.

1. Graph the line.
2. Identify another point on the line. $(4,-2)$
(0,-4)
3. Name the quadrants through which the line passes.
I, III, IV

(B) Graph

$$
\underset{-2 x}{2 x+3 y=} \underset{-2 x}{12}
$$

$$
\frac{3 y}{3}=\frac{-2 x}{3}+\frac{12}{3}
$$

a) Label the x-intercept
b) Label the y-intercept.

${ }^{G}$
A
0
0

a. Which point shows the heaviest bag? \qquad
b. Which point shows the cheapest bag? \qquad
c. Which bag is the best value? \qquad F Why? \qquad
\qquad
\qquad

Formula Re-arrangment Challenge

Rearrange the formula $a=x+\frac{c x}{d}$.to make x the subject.

$$
\begin{aligned}
& a=x+\frac{c x}{d} \\
& a d=d x+c x \\
& d x+c x=a d \\
& x(d+c)=a d \\
& x=\frac{a d}{d+c}
\end{aligned}
$$

E

$$
\begin{gathered}
\text { Solve } \begin{array}{c}
73=-2+3 x^{9} \\
-12+2 \\
\frac{75}{3}=\frac{3 x^{2}}{3} \\
x^{2}=25 \\
\sqrt{x}= \pm 5
\end{array}
\end{gathered}
$$ Functions

Most fests from now on:

- individual
\approx Weighted as 100 points

"Use Function Language and Notation"
 We've already been reviewing

read page 6

A relationship between inputs and outputs is a function if there is exactly one output for each input. Functions are often written as $y=$ some expression involving x, where x is the input and y is the output. The following is an example of a function.

x	-2	-1	0	1	2	3	4	5
y	16	9	4	1	0	1	4	9

In the example above the value of y depends on x, so y is also called the dependent variable and x is called the independent variable.

a) Calculate $K(-6)$

$$
K(-6)=-\frac{-6}{2}-1
$$

$$
=3^{2}-1=2
$$

b) Find x if $k(x)=10$ find x if the output is 10

$$
22=-x
$$

$$
\begin{aligned}
& 10=-\frac{x}{2}-1 \\
& +1
\end{aligned}
$$

$$
\|=-\frac{x}{2}
$$

$$
f(-22)=10
$$

$$
\text { multiply by } 2
$$

$$
2(11)=\frac{2}{2}\left(\frac{x}{2}\right)
$$

$$
\text { (e) Solve } g(x)=-16
$$

$$
-16=-(x-2)^{2} \quad x-2= \pm 4
$$

$$
\text { multiply by }-1
$$

$$
x=2 \pm 4
$$

(c) calculate $g(3)$

$$
\begin{array}{lll}
16=(x-1)^{2} & x= & \\
\sqrt{(x-1)^{2}}=\sqrt{16} & x=2 e^{2} & x^{2}=2 \\
=2
\end{array}
$$

$$
\begin{aligned}
g(3) & =-(3-2)^{2} \\
& =-1
\end{aligned}
$$

(f) Solve $g(x)=100$

$$
100=-(x-2)^{2}
$$

(d) Calculate $g(-1)$

$$
-100=(x-2)^{2}
$$

$$
\begin{aligned}
g(-1) & =-(-1-2)^{2} \\
& =-(-3)^{2}=-9
\end{aligned}
$$

$$
\begin{gathered}
\sqrt{(x-2)^{2}}=\sqrt{-100} \\
\text { NO answer }
\end{gathered}
$$

Go back to the back side of the e^{\prime} warm up
Angelicà is working with function machines. She has the two machines $g(x)=2 x^{2}-11$ and $h(x)=\sqrt{x+5}$
She wants to put them in order so that the output of the first machine becomes the input of the second. She wants to use a beginning input of 4.

1. In what order, níust she put the machinès to get a final output of 7 ?
2. Is it.póssible for her to get a final output of $\mathbf{- 3}$? If so, show ,- how she could do that. If not, explain why not.

$$
g(x)=\sqrt{x-5} \quad h(x)=x^{2}-6
$$

Algebra, 2 is about studying many types of functions because there are so many different types of behavior in the world.
occasionally you'll be asked to either
sketch a picture or graph a function.

There is a big difference between
a sketch and a graph

Graphs

- Plot points accurately
- Graph Paper
- label key points
- go by "ones" if possible

Use your GDC to help make both

Let's learn a few things about your GDC
functions must be in graphing form

$$
\begin{array}{r}
\text { or " } y=\text { " } \\
\sqrt{\frac{x}{2}}+y=4
\end{array}
$$

Pick up the $1 / 2$ sheet
Write an equation for the situation.

$$
y=2 x+15
$$

Fill in the table.

$$
y=\operatorname{tg} x+2
$$

x	y
10	35
20	54
30	75
40	95

Assignment

Work sheet 1.1.1

