

Pick up the

WARM UP

Formula Re-arrangment Challenge

Rearrange the formula $a = x + \frac{cx}{d}$.to make x the subject.

$$a = x + \frac{cx}{d}$$

$$ad = dx + cx$$

$$dx + cx = ad$$

$$x(d + c) = ad$$

$$x = \frac{ad}{d + c}$$

 $a = x + \frac{cx}{d}$

$$(d) Q = (d) X + d(x)$$

$$ad = dx + cx$$

$$ad = dx + cx$$

$$\frac{\text{ad}}{x} = d + 0$$

$$\begin{array}{c|c}
-e & -e \\
\hline
-e & -d
\end{array}$$

$$=$$
 Solve $73 = -2 + 3x^{1}$

$$\frac{75}{3} = \frac{3x^2}{3}$$

$$\chi^2 = 25$$

$$\times = \pm 5$$

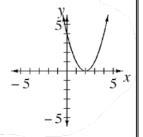
Ch. 1 Functions

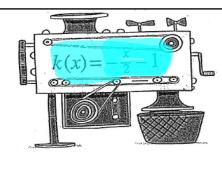
Most fests from now on.

- = individual
- = Weighted as 100 points

Jim.

"Use Function Language and Notation"


We've already been reviewing


A relationship between inputs and outputs is a **function** if there is exactly one output for each input. Functions are often written as y = some expression involving x, where x is the input and y is the output. The following is an example of a function.

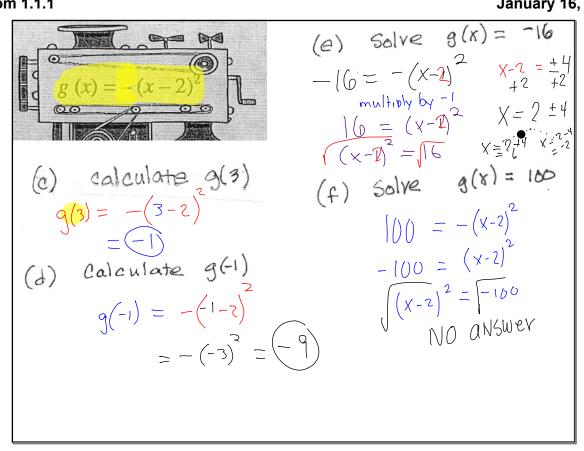
$$A = (x-s)_{s}$$

L									
	$\boldsymbol{\mathcal{X}}$	-2	-1	0	1	2	3	4	5
	y	16	9	4	1	0	1	4	9

In the example above the value of y depends on x, so y is also called the **dependent variable** and x is called the **independent variable**.

a) calculate
$$K(-6)$$

 $K(-6) = -\frac{-6}{2} - 1$
 $= 3 - 1 = [2]$


$$f(-22) = 10$$

b) Find x if
$$k(x)=10$$

find x if the output is 10

$$10 = -\frac{x}{2} - 1$$

$$11 = -\frac{x}{2}$$
multiply by 2

$$2(11) = \frac{x}{2} = \frac{x}{2}$$

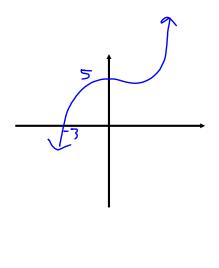
Go back to the back side of the warm up

Angelica is working with function machines. She has the two machines $g(x) = \sqrt{1 + x}$ and $h(x) = \sqrt{1 + x}$

She wants to put them in order so that the output of the first machine becomes the input of the second. She wants to use a beginning input of **4**.

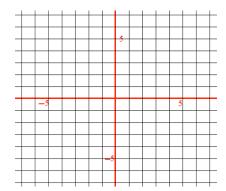
- In what order must she put the machines to get a final output of **7**?
- 2. Is it possible for her to get a final output of -3? If so, show how she could do that. If not, explain why not.

$$g(x) = \sqrt{x-5} \qquad h(x) = x^2 - 6$$

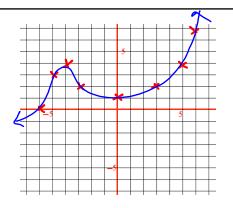

$$h(x) = x^2 - 6$$

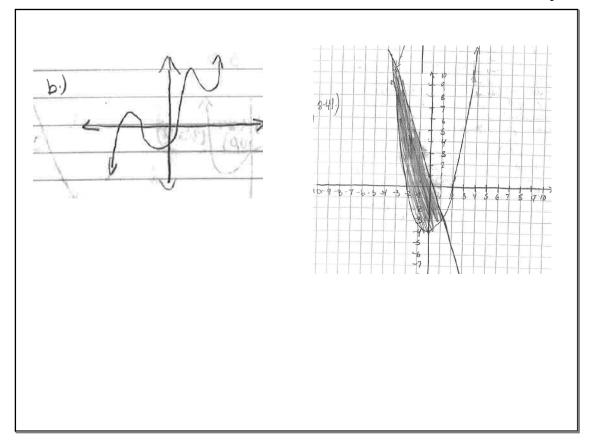
Algebra 2 is about studying many types of functions because there are so many different types of behavior in the world.

occasionally you'll be asked to either


sketch a picture or graph a function.

There is a big difference between a sketch and a graph


Graphs


- Plot points accurately
- Graph Paper
- label key points
- go by "ones" if possible

don't waste time with "tic" marks

Graphs

Use your GDC to help make both

Let's learn a few things about your GDC

$$\sqrt{\frac{x}{2}} + y = 4$$

Prck up	the	1/2	sheet
1 1610	1110	1 _	0

1. The carnival charges \$15 for admissions and \$2 per ride. (x = number of rides, y = cost)

Write an equation for the situation.

U = 2x +15

Fill in the table.

x	у
10	35
20	55
30	75
40	95

y = 15/2+2

<u>Assignment</u>

Work sheet 1.1.1

