https://www.desmos.com/calculator/ie7t023ltt

Warm Up ${ }_{7.14 \text { day } 1}$

Without using a calculator or your notes, sketch and label two cycles of a sine curve $f(\theta)=\sin \theta$
-1

poking at your sketch list the first two θ - axis intercepts that are greater than 360°

Determine the size of the reference angles associated with the following angles of rotation. Draw unit circles with a horizontal midlines to help. (a vertical axis might cause confusion so leave it off)

$$
\theta=330^{\circ}
$$

$$
A_{\text {ref }}=30^{\circ}
$$

$$
360^{\circ}-330^{\circ}=30^{\circ}
$$

Name another rotation angle
with the same vertical
height as as 40°.

via a Sine Graph

5. Suppose your best friend was stuck on the Screamer Ferris Wheel when it had rotated 154°. How high was the climb down to the ground level?

$$
\begin{gathered}
\sin 6^{0}=\frac{h}{100} \\
h=100 \sin (26) \\
=\frac{33}{}=\frac{8}{4} 84
\end{gathered}
$$

$$
7-37
$$

(a) The rider is just pass the highest point.
(b) Just below ground
(c) Back to the starting point.

$$
7-38
$$

proportional thinking

$$
\frac{3.5}{4,25}=\frac{h}{100}
$$

cross matitiply

$$
\begin{aligned}
& h(4.25)=100(3.5) \\
& h=\frac{100(3.5)}{4.25} \approx 82.4 \\
& \text { feet }
\end{aligned}
$$

$$
7-40 \quad y=3 x^{2}+6 x+1
$$

$$
\begin{aligned}
& y \text {-int } \\
& \operatorname{set} x=0 \\
& y=1 \\
& (0,1)
\end{aligned}
$$

$$
\begin{aligned}
& x \text {-int (set } y=0) \\
& 3 x^{2}+6 x+1=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { cant be factored } \\
& \text { so Le Quadratic }
\end{aligned}
$$

$$
\begin{aligned}
& \text { SD use Quadratic } \\
& \text { formula }
\end{aligned}
$$ form ult

$$
a=3 \quad b=6 \quad c=1
$$

$$
x=\frac{-(6) \pm \sqrt{(6)^{2}-4(3)(1)}}{2(3)}
$$

$$
x=\frac{-6 \pm \sqrt{24}}{6}=\frac{-6 \pm 2 \sqrt{6}}{6}
$$

$$
2 \frac{[-3 \pm \sqrt{6}]}{6}=\frac{-3 \pm \sqrt{6}}{3}
$$

$$
\left(-\frac{3 \pm \sqrt{6}}{3}, 0\right)
$$

7-4 From the graph you can see that the
 than California
trice os many calif. pennants $\rightarrow C=2 p$ than in PenNsylvania

$$
p=\frac{e}{2}
$$

$w=c-5$

$$
\begin{aligned}
& w+c+p=40 \\
& 0.5+c+\frac{c}{2}=40
\end{aligned}
$$

multiply
by 2

$$
\begin{aligned}
& 2 c-10+2 c+c=80 \\
& 5 c-10=80 \\
& 5 c=90 \\
& c=18 \\
& w=18-5 \quad p=\frac{18}{2}=9 \\
& =13 \quad>
\end{aligned}
$$

18 from California 13 from Washington 9 from Pennsylvania

and the connection
to the SineFunction

The assignment due today is the last one that you will show on the blue Recording Sheet.

The blue recording sheet, with all assignments, will be due tomorrow.

https://www.desmos.com/calculator/ie7t023ltt

TODAY Cosine gets involved

Ain - Generate the Unit Circle Definition of Sine and Cosine

Find the coordinates accurate to 2 decimal places.

Summary

The sine is the height (vertical) distance from the x-axis)

$$
\sin \theta
$$

The cosine tells you about the horizontal distance from the y-axis.

Estimate the coorginates of

The Pythagorean Identity $(\cos \theta)^{2}+(\sin \theta)^{2}=1^{2}$

$$
\cos ^{2}(\theta)+\sin ^{2} \theta=1
$$

a. Find the exact coordinates of point Q by using the Pythagorean Theorem.
b. What is the value of $\sin \theta=\sqrt{\frac{7}{16}}$

$$
\left(\frac{3}{4}\right)^{2}+\sin ^{2}(\theta)=1
$$

$$
\sin ^{2}(\theta)=\frac{16}{16}-\frac{9}{16}
$$

$$
\frac{9}{16}+\sin ^{2}(\theta)=1
$$

$$
\sin ^{2} \theta=\frac{7}{16}
$$

$$
\sin ^{2} \theta=1-\frac{9}{16}
$$

$$
\sqrt{\sqrt{r}}
$$

$L \subset Q$

Wednesday Assignment:

$$
\begin{aligned}
& 7 \ldots .53-55,58-60,67 \\
& \text { Mr. } C \longrightarrow \text { pdf }
\end{aligned}
$$

