3 Warm Up Questions
(1) Completly factor $100 n^{2}-200 n+100$

(2) Solve the absolute value equation $3|2 x+1|-4=56$
(1) Completly factor

$$
\begin{aligned}
& 100 n^{2}-200 n+100 \\
& 100\left(n^{2}-2 n+1\right) \\
& 100(n-1)(n-1) \\
& n \frac{n}{-n}-1
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
3|2 x+1|-4 & =56 \\
+4 & +4
\end{aligned} \\
& \frac{3|2 x+1|}{3}=\frac{60}{3} \\
& |2 x+1|=20 \\
& 2 x+1=30 \\
& 2 x+1=-20 \\
& 2 x=19 \quad 2 x=-21 \\
& x=\frac{19}{2} \quad x=-\frac{21}{2}
\end{aligned}
$$

(3)

another perspective
(0) $\frac{7}{(1)}, \frac{-}{(2)}, \frac{56}{(3)},-$
another perspective

- -26 Morgan
$x=$ \# weeks

$$
\begin{array}{rl}
y=615+25 x & y
\end{array} \quad=975-15 x
$$

Test 1 Re-take Options
The Window is closing on opportunties to come in to get help and the re-take it.

Thur
Fri
Test 2

Question on HW?

B- 26
Morgan's savings

$$
M=615+25 x
$$

Kendal's

$$
\begin{aligned}
& 615+25 x=975-15 x \\
&+15 x=975 \\
&=-615 \\
& 615+ \\
&-615
\end{aligned}
$$

when will
they be the same?
'spending !!

Thar will both have the same in 9 weeks
$B-35$
(a)

x	y
-1	3
0	$\leftarrow 15$
1	75
2	$\leftarrow 375$
3	$\leftarrow 1875$

$$
3 \cdot r \cdot r=75
$$

$$
3 r^{2}=75
$$

$$
r^{2}=25
$$

\sqrt{r}
$r=5$ multiplier
b) $\frac{77.312}{96.94}=0.8$ mustiplicar

x	y	
0		$\leftarrow 151$
1		$\leftarrow 120.8$
2	96.94	
3	77.312	
4		$\leftarrow 61.95$

$$
\underbrace{y=151(0.8)^{x}}\}
$$

B-64
(a)

$$
\begin{gathered}
8 a+a-3=6 a-2 a-3 \\
9 a-3=4 a-3 \\
-4 a \\
5 a-3=-3 \\
+3=+3 \\
5 a=0 \\
\text { dividebys } \\
a=0
\end{gathered}
$$

(b)

$$
\begin{aligned}
& 8(3 m-2)-7 m=0 \\
& 24 m-16-7 m=0 \\
& 17 m-16=0 \\
& 17 m=16 \\
& \left\{\begin{array}{c}
\text { m } \\
\text { 年 } 16 \\
\hline 17
\end{array}\right.
\end{aligned}
$$

(a)
$\frac{x}{2}+1=6$

$$
\frac{x}{2}=5
$$

maltiply by z

(d)

$$
|x-3|+5=11
$$

$$
|x-3|=6
$$

$B-112$ a) $3^{-2}=\frac{1}{3^{2}}=\frac{4}{9}$
b) $m^{-4}=\frac{1}{m^{4}}$
c) $\left(\frac{1}{2}\right)^{-3}=\left(\frac{2}{1}\right)^{3}=2^{3}=$
d) $\left(\frac{3}{5 x}\right)^{-1}=\left(\frac{5 x}{3}\right)^{\prime}=\left\{\frac{5 x}{3}\right\}$

Aim
Create an exponential model using double substitution

to help us, we'll re-visit a problem from our RECENT past (the Warm Up)

$$
y=m x+b
$$

slope 3 point $(5,19)$
input

$$
y=m x+b
$$

because we new
it was a lime

We made substitutions
title
Create Exponential functions using double Substitution

4 method works on many types of functions

Example 1
find the equation of an exponential function with an asymptote at $\mathbf{y}=0$ that passes through the points $(2,16)$ and $(6,256)$.

$$
\begin{aligned}
a & =\frac{16}{(b)^{2}} \\
a & =\frac{16}{(2)^{2}} \quad y=4(2)^{x} \\
& =4
\end{aligned}
$$

$$
16=a b^{2} \quad 256=a b^{6}
$$

example $2(4,11)(7,1375)$

$$
\begin{aligned}
y & =.0176(5)^{x} \\
\frac{11 b^{2} b^{3}}{b^{4}} y & =\frac{11}{625}(5)^{x}, \quad \frac{b^{7}}{b^{4}}
\end{aligned}
$$

Assignment
Worksheet "Systems...." which requires your textbook on two of the problems.

