Check HW first with the solutions

 then

$$
\begin{gathered}
\text { HeW } \\
\text { questions }
\end{gathered}
$$

$$
\begin{aligned}
& \left((x-1) x=\frac{y+1}{y-1}(y-1)\right. \\
& (y-1)(x)=y+1 \\
& y x-x=y+1 \\
& y x-y=x+1 \\
& y(x-1)=x+1
\end{aligned}
$$

$$
y=\frac{x+1}{x-1}
$$

Soh Cah Tou

$$
\begin{gathered}
\cos C=\frac{8 \sqrt{3}}{16}=\frac{\sqrt{3}}{2} \\
\left.\cos ^{-1}(\cos C)=-\cos ^{-1} \frac{\sqrt{3}}{2}\right) \\
C=\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)
\end{gathered}
$$

141 e
answer

1) Use the compound interest formula:

Suppose you invest your $\$ 5,000$ savings to save for a car. You find a bank that pays 5.8% annual interest. Find out how much you would be in your account 7 years from now if you bank pays you interest compounded quarterly. ($n=4$)

$$
F=P\left(1+\frac{r}{n}\right)^{n t}
$$

2) Repeat the calculation, but assume monthly compounding ($n=12$)
3) Repeat once more, but this time assume compounding daily ($n=365$)

Invest ${ }^{\#}$ 5, 000 for 15 years at 7% compound interest quarterly $n=4$

$$
\begin{array}{ll}
n=1 & \\
n=4 & 14,159.08 \\
n=12 & 14,244 . .^{13} \\
n=365 & 14,286^{82}
\end{array}
$$

the higher the " n "
 the larger the multiplier but.....

the increase starts to slow down.

n

$$
F=P(\underbrace{1+\frac{r}{n}})^{n t} \rightarrow F=P e^{r t}
$$

4) Now find the final balance if the bank uses continuous compounding.

$$
\begin{aligned}
F V & =P V e^{r t} \quad A=P e^{r t} \\
& =5000 e^{.058 \cdot 7}
\end{aligned}
$$

CONTINOUS
compound interest formula

Aim
Solve exponential equations that have the natural base, e

Top 4 REASONS why $f(x)=e^{x}$ is kNown as the Exponential Function
\# $4 \quad f(x)=e^{x}$ has special calculus properties that simplify many calculations
\#3 e is considered to be the natural base.
\#2 $e>1$ so $f(x)=e^{x}$ is a growth function
and the number one reason why $f(x)=e^{x}$
is THE natural exponential function \qquad
\#1 Leonhared Euler introduced the notation and he could call it what he wanted to call it!

Using Gogrithms to sove Nerton's Law of Cooling

$$
\frac{T(t)-T_{a}}{T_{0}-T_{a}}=e^{-k t}
$$

Radioactive half-life

$$
P(t)=P_{0} e^{-k t}
$$

Doubling time for an investment

$$
2 P_{0}=P_{0}(1.0075)^{n}
$$

A spider enjoying his favorite movie.
(and you know which movie that is!)

$$
y=e^{x}
$$

has an inverse which is called the natural log function.
(c) (e) () inverse

$$
f(x)=e^{x}
$$

$$
f^{1}(x)=\log _{e} x
$$

C is so prevalent out in the real world its logarithm gets its very own notation

Monster checking for kids under the bed.

Solve Natural Log Equations

Solve each equation. Check your answers.

$$
\begin{aligned}
& \ln x=0.1 \quad \log _{7}(x)=.1 \\
& \rightarrow \text { convert } \\
& x=e^{.1} \\
& \quad x \approx 1.105
\end{aligned}
$$

$$
\begin{aligned}
& \ln \left(\frac{x+2}{3}\right)=12 \\
& \text { convert } \\
& \frac{x+2}{3}=e^{12} \quad x+2=3 e^{12} \\
& x=3 e^{12}-2 \\
& x \approx 488,262.374
\end{aligned}
$$

$$
\underbrace{\ln 5-\ln (2 x)}_{\text {condense }}=1
$$

$$
\ln \left(\frac{5}{2 x}\right)=1
$$

$$
\begin{aligned}
\frac{5}{2 e} & =\frac{2 x \notin}{2 \not} \\
x & =\frac{5}{(2 e)} \approx 6 \times 166 \\
\frac{5}{6} & =\frac{2 x}{2} \quad x
\end{aligned}=\frac{5 / e}{2} .920
$$ convert

multiply by $2 x$

$$
\text { E }-\frac{5}{2 x}=e^{\prime}
$$

Shortcut

$$
\begin{array}{ll}
\log (10)- & \ln (e)=x \quad \log _{7}(7) \\
\log (10)=x & e^{x}=e \\
10^{x}=10 & \mid
\end{array}
$$

and expon. equations with base e

$$
e^{x+1}=30
$$

take log of both sides

$$
\begin{aligned}
& \ln \left(e^{x+1}\right)=\ln (30) \quad x+1= \\
& (x+1) \ln (e)=\ln (30) \\
& x+1=\frac{\ln (30)}{\ln (e)}<-1 \quad x=\underset{\sim}{\ln (30)}-1
\end{aligned}
$$

An initial investment of $\$ 200$ is now valued at $\$ 245.25$. The interest rate is 6% compounded continuously. How long has the money been invested?

$$
\begin{aligned}
A & =P e^{r t} \\
245.25 & =200 e^{.06 t} \\
\frac{245.25}{200} & =e^{.06 t}
\end{aligned}
$$

$$
06 t \cdot \underbrace{\ln (e)}=\ln \left(\frac{245.25}{200}\right)
$$

$$
\overbrace{1}
$$

$$
.06 t^{1}=\ln \left(\frac{2455^{25}}{200}\right)
$$

$$
t=\frac{\ln \left(\frac{245.25}{200}\right)}{.06}
$$

$$
t=3.399
$$

years

Assignment
Worksheet 6242

