- Be sure to have your

. textbook

in
class from now on

Pick up the Warm Up

Multiple Choice. The real reason for Mr. Cedarlund's scar is:
a) He fell off a sled going down a steep snowy hill.
b) He really DID get in a fight at a restaurant when a Boise State fan through a French fry at him.
c) His face attacked the sharp claws of his new puppy.
d) He did not wear enough sun screen or hats when he was younger.

TRUE or FALSE

Once class starts, you should only write on your homework with a pen of a different color.
However, if you did not really spend much time on the assignment, please don't try to catch up during class. Just do it later instead and turn it in late.
_- The largest portion of your self reported HW score is whether you are showing detail on all problems requiring a process.
__. When absent, always check Mr. Cedarlund's website before I get back to class.

Types of Sequences

An arithmetic sequence is a sequence with an addition (or subtraction) sequence generator. The number added to each term to get the next term is called the common difference..

A geometric sequence is a sequence with a multiplication (or division) generator. The number multiplied by each term to get the next term is called the common ratio or the multiplier.

Classify the sequences as Geometric, Arithmetic, or neither.
$40,43,46,49,52, \ldots$

$$
d=3
$$

$-4,12,-36,108,-324, \ldots$

$$
r=-3
$$

$-29,-34,-39,-44,-49$,

$$
d=-5
$$

$$
\begin{aligned}
& \frac{108}{-36}= \\
& \frac{-36}{12}=
\end{aligned}
$$

$1,4,9,16,25, \ldots$
$625,125,25,5, \cdot$
$G \quad r=\frac{1}{5}$

Quiz 1

A look ahead....
Sequences Exponential functions Exponent Boot Camp Systems of Equations Starting ch. 1
$L \bullet$ exponential equations
Review QuIz 2

Aim today

Write Sequence Formulas

$t_{0}=-3 \quad$ Arithmetic Sequences	
$7,17,27,37, \ldots$	
$t_{1} \quad t_{2} \quad t_{3} \quad t_{4}$	
first term format t_{n}	$=7+10(n-1)$
(A)	
zero term format t_{n}	$=-3+10 n$
t_{70}	$=7+10(70-1)=697$
or t_{70}	$=-3+10(70)=697$

(B) $90,85,80,75$,

$$
\begin{aligned}
& t_{1} \quad t_{3} \\
& t_{n}=90-5(n-1)
\end{aligned}
$$

$$
\begin{aligned}
& t_{26}=95-5(26)=-35
\end{aligned}
$$

(c)

n	$t(n)$		
1	5.75	$F_{\bullet} \cdot$	$t_{n}=5.75+0.25(n-1)$
2			
3	6.25	$z_{\bullet} T_{\bullet} \cdot t n=5.50+0.25(n)$	
4	6.50		
5	6.75		
	\vdots		$t_{800}=5.75+.25(800-1)$
800			$=205.50$

D Consider the sequence $t(n)=-4,-1,2,5, \ldots \ldots$.
Write the equation for the sequence, $t(n)$.

$$
\underline{1}^{s t} \operatorname{tar} n \quad t(n)=-4+3(n-1)
$$term $\quad t(n)=-7+3 n$

Is it possible for $t(n)$ to equal 418 ?

$$
\begin{aligned}
& 418=-7+3 n \\
& 425=3 n \\
& n=141.6 \\
& 5^{\circ}
\end{aligned}
$$

Writing Formulas for Geometric Sequences

$$
\begin{aligned}
& \begin{array}{r}
t_{1}, t_{4}, t_{3} \\
e_{1}, 5,25,125,625, \ldots \\
t_{0}=\frac{1}{5} \\
t_{n}
\end{array}=1 \cdot 5^{n-1}=1(5)^{n-1} \\
& t_{n}=\frac{1}{5}(5)^{n}
\end{aligned}
$$

$625,125,25,1, \ldots \ldots$

a

Months	Rabbits
0	4
1	12
2	36
3	
4	

first term format

$$
t_{n}=12(3)^{n-1}
$$

$$
\text { zero term format } \begin{aligned}
t_{n} & =4(3)^{n} \\
t_{19} & =4(3)^{19}
\end{aligned}
$$

$$
1.13 \times 10^{12}
$$

$$
4,649,045,868
$$

(6.)

Months	Rabbits
0	6
1	
2	24
3	
4	96

What is the growth factor (or multiplier)?

$$
\begin{gathered}
6-r=24 \\
6 r^{2}=24 \\
r^{2}=4 \\
r=r
\end{gathered}
$$

zero term format $t(n)=$
first term format $t(n)=$
(c) $-30,36,-,-, \ldots$
multiplier:
zero term format $t(n)=$
first term format $t(n)=$

Graphing Calculator tidbits

- Mode
- Format
- Memory Re-set
- Battery Life / Screen Darkness

$$
A_{\boldsymbol{a}_{0}} 23,25,37,51,68,92 d
$$

Assignment is out of your Textbook (problems are out of Appendix A in the very back of the Book)

