

Simplify
$$c^{2} \cdot c^{3} \cdot c^{4} = C$$

$$(2cd^{2})(-5c^{3}d) = 2c^{2}d^{2} - 5c^{3}d^{2}$$

$$-10c^{4}d^{3}$$

A bacteria decays at a rate of 30% per hour. If there are 2000 bacteria to start with:		
a) Write an equation that will represent the number after typers		
How much will	be left in 8 hours?	
100-30	y = 2000(.7)	
70%	= 115 xe1;	
s 7 mult		

HW

|| (a) |

23,500 Lose 15'6 (b)

14,365,112 12% increase

$$|05b|^{3(8)} = 2 \times 2 \times 47 = 5 \times 47 =$$

$$\frac{X+1}{3} = \frac{X}{5}$$

$$2(X+1) = 3X$$

Review exponents

Exponential "Boot Camp"

what if exponents are

negative ????

$$\left(\frac{3}{5}\right)^{1} = \left(\frac{5}{3}\right)^{1} = \frac{5}{3}$$
 $5^{-1} = \left(\frac{5}{1}\right)^{1} = \frac{1}{5}$

$$\left(\frac{a}{de}\right)^{-1} = \frac{de}{a}$$

$$M_{-1} = \frac{M_{+}}{M_{-}}$$

$$5^{-1} = \frac{1}{5} = \frac{1}{5}$$

$$4' a^{-1} = \frac{4}{a} \left\{ \frac{4}{a} \right\}$$

Manipulating Powers

$$4) (ab)^x = a^x b^x$$

7)
$$\frac{1}{a^{-x}} = a^x$$

$$5) \left(\frac{a}{b}\right)^{x} = \frac{a^{x}}{b^{x}}$$

6)
$$a^{-x} = \frac{1}{a^x}$$

$$\frac{1}{\sqrt{1}} = \frac{2}{\sqrt{1}} = \frac{$$

$$\frac{n^6}{n^2} = n^6 n^2 = n^8$$

$$\frac{58^3}{x^6 x^3} = 5x^3 \qquad (5)$$

You'll be successful with exponents

if you can apply the

exponent rules'

while having access

to the rules

Get in pairs (2)

Each of you should get your own paper.

Manipulating Powers

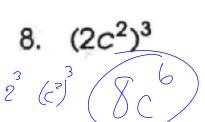
Handout

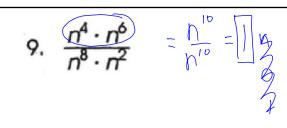
- 4) $(ab)^x = a^x b^x$

- $5) \left(\frac{a}{b}\right)^{x} = \frac{a^{x}}{b^{x}}$
- 6) $a^{-x} = \frac{1}{a^x}$

Simplify each expression.

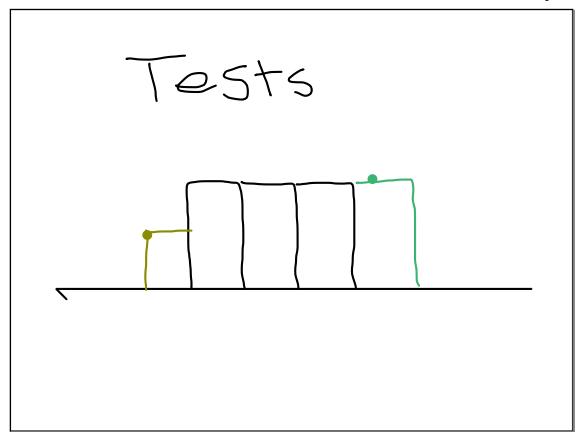
- **Example:** $(x^2)^4 = x^{2\cdot 4} = x^8$
- Use the 2nd law


- 2. $\frac{\chi^2 \chi^2}{\chi^2} = \chi^2$ 3. $(\chi^2)^3 (\chi^3)^3 = \chi^3 ($


$$\left(\frac{x}{y^3}\right)^5 \frac{(x)}{(y^3)^5} = \frac{x^3}{(x^3)^5}$$

$$\frac{1}{x^{-15}} = \times$$

$$\frac{\mathbf{g}^{8}}{\mathbf{g}^{3}}a^{3} = \frac{1}{0^{3}}$$



11.
$$\left(\frac{v}{3}\right)^4 \cdot \left(\frac{5}{v}\right)^2$$

$$\frac{\sqrt{4}}{81} \cdot \left(\frac{5}{v}\right)^2 = \frac{25}{81 \times 20}$$

$$\frac{\sqrt{5}}{25 \times 20}$$

Assignment:

is in Appendix

A....15 , 102

B.....18, 23, 27, 46abc,

January 05, 2018